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Abstract: Arterial stenosis is the lessening of the arterial wall due to the growth of aberrant tissues

that prevent adequate blood flow in the human circulatory system and induces cardiovascular diseases.

Mild stenosis, over time, can lead to serious and permanent damage if it remains uncured. Navier-Stokes

equation in cylindrical polar coordinates system has been extended by two-layered blood flow along the

axial direction with appropriate boundary conditions. A steady flow through a stenosed artery has been

investigated extensively using the analytical approach in the case of two-layered blood flow. Mathematical

expressions for two-layer hemodynamic parameters such as velocity profile, volumetric flow rate, and effect

of stenosis progression on parameters with the variation of core and peripheral layered coefficient of viscosity

are derived. Moreover, pressure drop, and shear stress have been calculated analytically in an artery with

and without stenosis. Peripheral viscosity has less contribution to varying velocity distribution than the

core and is proportional to stenosis size. The volumetric flow rate decreases with an increasing viscosity

coefficient. Pressure drop and shear stress attain maximum value in the region stenosis occur maximum

height in core layer. The present work could serve as a model in biomedical engineering for the cure of

vascular-related diseases and has the potential in designing the devices of this field.

Key Words: Mild stenosis; viscosity coefficient; velocity profile; volumetric flow rate; pressure drop; shear
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1. Introduction

An anomalous biological response results from unusual hemodynamic circumstances, cardiovascular

diseases are intimately related to flow in the blood vessels [2, 6]. The human circulatory system is a closed

cardiovascular network of arteries, veins, and capillaries [8, 15]. Arteries are the vascular vessels that trans-

port oxygen-rich blood to various parts of the body, hence cardiovascular network plays a vital role in

sustaining life [14, 18]. Any type of intrusion of fat into the arterial wall blocks the way of blood flow

and causes a deficiency of oxygen supply [13]. Intravascular atherosclerotic plaque that develops across the

inner wall of an artery due to fat deposition, calcification, and other abnormal growth of tissues is known

as stenosis [23, 17]. It locates in several parts of the circulatory system and protrudes into the lumen of

the arteries narrowing them, and causing arterial disorders under diseased conditions [28, 36]. With time,

constriction might deteriorate and this condition has the potential to cause both arterial thrombosis and

bleeding [16, 28]. Gautam et al. [21] have studied the effect of increasing stenosis on flow parameters taking

blood as a non-Newtonian fluid. The flow disturbance further influences the incidence of diseases namely

heart attacks, strokes, angina pectoris, and cerebral stroke [11, 13]. According to Hiatt et al. [12], if the

stenosis increases for an extended period of time, it can result variety of medical disorders, including vision

loss, heart and brain hemorrhages. Circulatory problems are recognized to be the cause of seventy-five
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percent of all fatalities and stenosis is one of the most occurring cardiovascular diseases [23].

Halder [9] examined the flow of blood through a confined tube while treating the blood as a Newtonian

fluid. Ku [18] pointed out that the strong wall shear stress at the throat of stenosis can activate platelets

and cause thrombosis, which can completely obstruct the flow. Misra et al. [25] have discovered analytical

expressions for velocity distribution, pressure gradient, total angular velocity, wall shear stress, flow rate,

and resistance to fluid motion. Pokharel et al. [27] evaluated the pressure, pressure drop against the wall,

shear stress on the wall, the ratio of the maximum to the minimum shear stress, and pressure drop with and

without stenosis. Further Kafle et al. [17] have considered curved arteries and derived velocity profile and

volumetric flow rate with a variation of curvature assuming axial symmetric one-layered laminar flow.

In the literature above, flow has been described as one-layered, However; Bulgliarello and Sevilla [19] exper-

imentally demonstrated that the blood moving in small capillaries is composed of a core region of suspended

erythrocytes and outer layer of cell-free plasma. Srivastava and Saxena [33] found plasma thickness slows

down resistance to flow and increases shear stress on the wall. Chaturani and Kaloni [32] described the two-

layer model with shear stress at the core layer taking blood as incompressible fluid. Halder and Andersson

[10] has considered, flow as laminar, steady, axially symmetric and fully developed and discussed pressure

drop and wall friction in two layer blood flow model. Ponalagusamy [26] further considered the two-layer

model of blood flow to determine the apparent viscosity and examined the analytical and numerical impact of

mild stenosis on the blood flow characteristic in a two-layer model. Joshi et al. [16] have used a two-layered

model to examine how peripheral plasma viscosity affects the flow characteristic. Ponalagusamy and Manchi

[28] employed a mathematical model to analyze steady flow in six distinct types of stenoses, and found that

the two-layered model considerably reduced the axial variance of wall shear stress and flow resistance.

In view of the above literature, it is evident that in-depth investigations into blood flow with vascular dis-

orders have been conducted to determine the factor associated with it. Material structure is different for

peripheral and core layer which affects all flow parameters in core and peripheral layer. Therefore, study

of arterial two layer model in presence of mild stenosis yields more accurate and realistic results. In this

article, the study focuses on two-layer model of steady, laminar, and axi-symmetric flow in an artery with

mild stenosis which may contribute a better understanding of blood flow in an artery.

2. Two-layered Blood Flow Model

We have assumed blood is incompressible and Newtonian in the stenosed artery. Blood flow in arteries

can be modeled by using Navier-Stokes equation [7]. Suppose a uniform, cylindrical, axially symmetric,

laminar blood flow that is steady and completely developed through the artery of radius R0 in the presence

of mild stenosis. Let r be the radial velocity function and p be the pressure. Consider three components

vr, vθ, and vz are velocities along the radius vector, perpendicular to the radius vector, and along the axial

direction cylindrical shaped artery. Then, the continuity equation is given by [7]

(2.1)
1

r

∂

∂r
(rvr) +

∂

∂z
(vz) = 0

Navier-Stoke’s equation along radial and z-axis is,
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In axi-symmetric flow, vθ = 0 and vr, vz and p are independent of θ. Let us consider the steady flow and

let ρ be the density. The velocity component parallel to the z-axis is vz = v(r) and vr = 0, vθ = 0 then

equation (3) reduces to
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}
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where, µ is the coefficient of viscosity of the blood.

Here blood is represented by two-layer, inner core and outer peripheral layer with different homodynamic

parameters. Suppose Rps is radius of the artery in peripheral layer from center of radius, Rcs is the radius of

artery in the core layer in presence of stenosis such that

Rcs = βRps , Rc0 = βRp0

whereas Rp0 and Rc0 are the radius of peripheral (i.e., radius of the normal artery) and core layer of normal

artery respectively and β is the ratio of core radius to normal artery radius which is called scaling model

parameter. For two-layered model, we divide whole region into peripheral layer as Rcs(z) ≤ r ≤ Rps(z) and

core region as Rcs(z) ≤ r ≤ Rps(z).

Assume µp and µc are viscosity of peripheral and core layer respectively. More precisely two-layered viscosity

(µ) is defined as

µ(r) =

µp for Rcs(z) ≤ r ≤ Rps(z)

µc for 0 ≤ r ≤ Rcs(z)

Suppose δp is the maximum height of the stenosis in the peripheral layer and δc same as in core layer such

that

δc = βδp

The geometry of the stenosis in peripheral layer is given by [5]

(2.5) Rps(z) =

R
p
0 −

δp
2

(
1 + cosπ z

z0

)
for |z| ≤ z0

Rp0 for |z| ≥ z0

Similarly, the geometry of the stenosis in core layer can be expressed as [5]

(2.6) Rcs(z) =

R
c
0 − δc

2

(
1 + cosπ z

z0

)
for |z| ≤ z0

Rc0 for |z| ≥ z0

The equation 2.4 for peripheral and core layer respectively can be expressed as

(2.7) 0 = −∂p
∂z

+ µp

{
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}

Figure 1. Geometry of stenosis in two layer model [16].
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with boundary conditions (BCs):

vp =

vc at r = Rcs(z)

0 at r = Rps(z)
(2.9)

and

∂vp
∂r

= 0,
∂vc
∂r

= 0 at r = 0(2.10)

3. Analytical Solution of Two-layered Blood Flow Model

3.1. Two-layered velocity profile of blood flow. Peripheral layered velocity: Let vp be the velocity

peripheral layer [i.e., region Rcs(z) ≤ r ≤ Rps(z)]. Then, equation 2.7 become

−P (z)
r
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=

∂

∂r

(
r
∂vp
∂r

)
On integration

r
∂vp
∂r

= −P (z)
r2
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Using boundary condition
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(3.1)
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Again, integration
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P(Rp
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and thus peripheral layered velocity is
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Core layered velocity: Next, suppose vc be velocity of core layer [i.e., region 0 ≤ r ≤ Rcs(z)]. Then, from

equation 2.8
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Therefore, core layered velocity [i.e., in the region 0 ≤ r ≤ Rcs(z)] is
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3.2. Two-layered Volumetric Flow Rate. Peripheral layered volumetric flow rate: Let us consider

volumetric flow rate in peripheral layer be Qp and obtained as

(3.4) Qp =

∫ Rp
s

Rc
s
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P (z)
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s
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)
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π
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2
)2

Core layered volumetric flow rate: Similarly, volumetric flow rate in core region Qc is obtained as
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where µ =

µp

µc
.

Total volumetric rate: The total volumetric rate (Q) is sum of volumetric rate of peripheral layer Qp and

volumetric rate of core layer Qc. Then, total volumetric rate is

(3.6) Q = Qp +Qc =
π

8µp
P (z)[(Rps)

4 − (1− µ) (Rcs)
4]

3.3. Two-Layered Pressure Gradient Across the Stenosis Surface. Peripheral layered pressure

gradient across the stenosis surface: Assume pressure drop across stenosis in peripheral region is (∆P )ps .

Then,
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Using equation 2.5
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1
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Using binomial expansion, we get
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Neglecting higher order o(δp)
3 and integrating, Therefore, pressure gradient across the stenosis surface in

peripheral layer is
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8µpQp

π(Rp0)4
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This is the pressure drop in stenosed region of outer peripheral layer. For the condition when there is no

stenosis (i.e., δp = 0), Rps = Rp0 which implies
Rp

s

RP
0

= 1. Then, pressure drop in peripheral layer in the case

of without stenosis, i.e., (∆P )p0 is
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Core layered pressure gradient across the stenosis surface: Let pressure drop across stenosis in core

region is (∆P )cs. Then
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This is pressure drop across stenosis in core layer. When there is no stenosis (δc = 0),

Rc
s

R
p
s

= 1. Let pressure

drop in this region without stenosis be (∆P )c0. Then,

(3.9) (∆P )c0 =
4µpQc 2z0

π(Rc0)4
(

1
β2 −

(
1− µ

2

))
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3.4. Two-layered Shear Stress on the Stenosis Surface. Peripheral layered shear stress on the

stenosis surface: The shear stress on surface of peripheral layer across stenosis at r = Rps is denoted by

τps . Then,

τps =

[
−µp

∂vp
∂r

]
r=R

p
s

=

[
(−µp) (−P (z))

r

2µp

]
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p
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=
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2

]
Substituting value of P (z), we get
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Using equation 2.5,
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Using binomial expansion
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)
For the condition when there is no stenosis (i.e., δp = 0) on the peripheral layer, we have

(3.11) τp0 =
4µpQp

π(Rp0)3
1

(1− β2)2

Core layered shear stress on the stenosis surface: Shear stress on the stenosis at r = Rcs is denoted

by τ cs and obtained as

τ cs =

[
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After substituting the value of P (z), we have
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Using equation 2.6
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Using binomial expansion
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)
Moreover, shear stress on the surface of core layer in the case of no stenosis, i.e., δc = 0 is

(3.13) τ c0 =
2µpQc

π(Rc0)3
1(

1
β2 −

(
1− µ

2

))
4. Result and Discussion

4.1. Two-Layered Velocity Profile of Blood Flow through a Stenotic Artery. Comparison of

velocity profile between single and two-layered: Figure (2)A illustrates a comparison of velocity

profiles in two-layered and single-layered blood flow for different values of radial distances (0.0 − 0.8) mm.

At radial distance 0.6 mm velocity is 1.5 mm/s in two-layered that of 2.75 mm/s approximately in single-

layer. Velocity is 4 mm/s in both cases at 0.4 mm. At radial distance 0.2 mm, velocity is 6 mm/s and 5

mm/s approximately in both layers respectively. In the center, it is 6.5 mm/s and 5.25 mm/s for two-layered

and single. It is observed that velocity distribution is higher near the arterial wall in the single-layered but

quite a different phenomenon is seen, velocity is maximum in the center for two-layered as result the peak

value of velocity in the two-layered occurs forward to the peak value of velocity in single-layered. Figure 2B
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A

B C

Figure 2. Velocity distribution A: Single-layered verses two-layered model.

B: Single-layered model. C: Two-layered Model.

shows single-layered blood flow with various values of radial distances (0.0−0.8) mm. Velocity is 2.75 mm/s

at value 0.6 mm, 4 mm/s at value 4 mm, 5 mm/s at value 0.2 mm and 5.25 mm/s at center. It is revealed

that maximum velocity 5.25 mm/s occurs at the center of the artery whereas minimum velocity 2.75 mm/s

is near the wall of the artery. Figure 2C describes velocity distribution in two-layered blood flow for a radial

distance of values (0.0− 0.8) mm. At radial distance 0.6 mm, velocity is1.5 mm/s, at 0.4 mm, velocity is 4

mm/s and at 0.2 mm, it is 6 mm/s. It is seen that velocity is maximum in a core layer at the center with a

value of 6.5 mm/s. Velocity attains the least value 1.5 mm/s near the arterial wall in the peripheral layer.

It is concluded, velocity increases with increasing stenosis thickness in both layers but higher velocities were

observed for two-layered blood flow when compared with single-layered.

Two-layered velocity profile with variation of viscosity coefficients: Figure 3A shows peripheral

velocity distribution with radial distance r for various values of peripheral layer viscosity. Viscosity coefficient

µp takes values (0.2, 0.4, 0.6, 0.8) gm mm−1s−1. Radii in the region of stenosis along the core layer and

peripheral layer have been taken the value of Rcs = 0.6 mm and Rps = 0.9 mm respectively. It is observed

that velocity distribution in the peripheral layer is the maximum at least value of viscosity coefficient in the

peripheral layer. Velocity in peripheral layer, vp is maximum for the value of viscosity coefficient µp = 0.20

gm mm−1s−1 and velocity is minimum for value of viscosity coefficient µp = 0.80 gm mm−1s−1. It is also

noted that, as Rps decreases, the coefficient of viscosity µp decreases, and Rps increases with the coefficient

of viscosity µp increases. Figure 3B describes the relation between radial distance (r) and core velocity (vc)

for varying values of peripheral viscosity (µp). For peripheral viscosity values 0.20 gm mm−1s−1, 0.4 gm

mm−1s−1, 0.6 gm mm−1s−1, 0.8 gm mm−1s−1 corresponding core velocities are 7.4 mm s−1, 5.8 mm s−1,

5.4 mm s−1, 5.1 mm s−1 approximately. Because of the different values of peripheral viscosity, the initial

points of the core velocity are different in the boundary between the core and peripheral layers. Flow is

axisymmetric and the velocity increases gradually towards center which can be seen in the figure. These

data indicate that the maximum velocity at the center decreases as the peripheral viscosity (µp) increases,

which shows the plasma viscosity affects the core velocity.

Figure 3C describes the relation between radial distance (r) and core velocity (vc) for different values of

core viscosity (µc). In this case, we have taken the peripheral viscosity (µp) constant, so the initial point

at the boundary is the same for all values of core viscosity (µc). For the core viscosity with different values

0.09 gm mm−1s−1, 0.1 gm mm−1s−1, 0.11 gm mm−1s−1, 0.12 gm mm−1s−1 corresponding core velocities

are 5.9 mm s−1, 5.3 mm s−1, 4.9 mm s−1, 4.5 mm s−1 approximately. The effect of the core viscosity (µc)
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A

BC

Figure 3. A: Variation of peripheral layer velocity (vp) for different value

of peripheral layer viscosity µp. B: Variation of core layer velocity (vc) for

different value of core layer viscosity µc. C: Variation of core layer velocity

(vc) for different value of peripheral layer viscosity µc.

is more than the effect of peripheral viscosity (µp). This can be seen clearly when we compare Fig. 3B and

Fig. 3C. Compared with B, it has taken fewer viscosity values for different values of core velocity. This clearly

indicates that core velocity (vc) has been affected more due to core viscosity (µc). From these results, we

conclude that the velocity of the fluid reduces rapidly in both layers of flow with increasing value of viscosity.

The consequence of peripheral viscosity on varying velocity distribution has less contribution as compared

to core viscosity.

A B

C

Figure 4. A: Volumetric flow rate (Qp) for different values of peripheral

layer viscosity (µp). B: Volumetric flow rate (Qc) for different value of

peripheral layer viscosity (µp). C: Volumetric flow rate (Qc) for different

value of core layer viscosity (µc).
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4.2. Two-layered Volumetric Flow Rate through a Stenotic Artery. Figure 4A shows the volumetric

flow rate of blood in an artery across stenosis with various values of radius (0.6-0.9) mm. Flow rate is least

at value µp = 0.8 gm mm−1 s−1 and maximum at value µp = 0.2 gm mm−1 s−1 with radial value RPs = 0.9

mm. This figure shows that the volumetric flow rate decreases with the increased viscosity coefficient. A

larger value of µp, the less steep the curve becomes. As stenosis height is elevated, the effect of µp tends to

vanish due to the narrow artery and the curve becoming closer and closer. Figure 4 B depicts flux Qc in the

core layer for different values of viscosity coefficient µp. When µp changes from (0.2 − 0.8) mm, flux rises

up to 2.5 mm3/s approximately. It concludes that the less viscous the fluid becomes, the more speedy it

flows. Qc attains maximum value when Rps = 0.6 mm. Flow increases rapidly when the viscosity coefficient

µp is 0.2 gm mm−1 s−1 and the increment is least when the viscosity coefficient µp is 0.8 gm mm−1 s−1.

Figure 4C displays the relation between volumetric flow rate in the core layer with a radius for different

values of core viscosity µc. When the viscosity µc is 0.09 gm mm−1 s−1 the volumetric flow rate increases

from 2.0 mm3/s to 2.8 mm3/s. Similarly it increases from 1.70 mm3/s to 2.60 mm3/s for the core viscosity

0.10 gm mm−1 s−1. Finally the volumetric flow rate increases from 1.30 mm3/s to 2.20 mm3/s for the core

viscosity 0.12 gm mm−1 s−1. From this figure, it is noted that the effect of core viscosity is less effective

compared with the peripheral layer viscosity.

4.2.1. Total Volumetric Flow Rate of Blood through Artery in presence of Stenosis. In Fig. 5A, the relation

between flow rate and radius of the artery is explained for different values of peripheral viscosity. For Fig. 5A

core viscosity is kept constant and peripheral viscosity increases gradually from 0.2 gm mm−1s−1 to 0.8 gm

mm−1s−1. The volumetric flow rate in the core is less affected by the increment of the peripheral viscosity.

So the line in the graph is increasing minutely in the core or say up to 0.6 mm. In the case of the peripheral

layer, the volumetric flow rate is high for less viscosity which decreases gradually as the viscosity increases.

The volumetric flow rate decreases gradually from 7.5 mm3 s−1 to less than 4 mm3 s−1 as the viscosity

increases from 0.2 to 0.8 gm mm−1s−1. In comparison with the peripheral layer, the volumetric flow rate

which is affected negligibly in the core nearly 1 mm3 s−1 when the viscosity is 0.2 gm mm−1s−1 and less for

higher values of viscosity. In Fig. 5B, the relation between flow rate and radius of the artery is explained

for different values of core viscosity. In this case, peripheral viscosity is kept constant and core viscosity

increases gradually from 0.09 gm mm−1s−1 to 0.12 gm mm−1s−1. Fig. 5 also depicts that the volumetric

flow rate in the core is less effected by the change in viscosity in the peripheral layer. When the viscosity is

0.09 gm mm−1s−1 the volumetric flow rate is about 2.4 mm3 s−1 in the core layer but in the peripheral layer,

it increases up to 4.5 mm3 s−1. The result is almost similar to other values of the viscosity coefficient also.

In presence of progressive hemodynamic obstriction, it is observed that the volumetric rate of flow decreases

to a considerable extent as peripheral layer viscosity increases and is more influenced by accumulating value

of core layer viscosity.

4.3. Two-layered Pressure Drop with and without Stenosis in Blood Flow. Figure 6A depicts the

effect of peripheral stenosis on the pressure drop. Both regions with and without stenosis of the artery are

taken to study. To show the relation between these two variables other parameters (µp), volumetric flow

,

A B

Figure 5. Relation between volumetric flow rate and radius in A: periph-

eral viscosity. B: core viscosity.
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,

A B

Figure 6. A: Pressure drop in peripheral layer by variation of radius of

stenosis. B: Pressure drop in core layerby variation of radius of stenosis.

rate Qp, and z0 are kept constant. If there is no stenosis, we see a uniform change in pressure drop and the

line is almost straight. But in the region of stenosis, pressure drop changes immensely. In both cases, initial

points are the same but as the height of the stenosis increases from 0− 0.3 mm, pressure drop changes from

32.5 pa to above 65 pa. This indicates that the stenosis in the peripheral layer plays a central role in the

change in pressure drop.

Figure 6B describes the effect of core stenosis on pressure drop. As in case of Fig. 6A peripheral viscosity

(µp), core viscosity (µc), core volumetric flux Qc, and length of the stenosis z0 are kept constant. In the

part of the artery without stenosis, only a small change in pressure is seen which is denoted by a red line

and is straight almost, but in the stenotic region, a huge change in pressure drop is seen. Value of the other

parameters which are taken constantly are core viscosity (µc = 0.1), peripheral viscosity (µp = 0.5), length

of stenosis z0 = 1 mm, and a maximum height of the stenosis in core (δc) = 0.2 mm. As the height of stenosis

in the core increases from 0.0 mm to 0.2 mm, the pressure drop changes from 9.5 pa to 19 pa approximately.

When we analyze these two figures effect of stenosis in the peripheral layer (δp) is more than stenosis in core

layer (δc). These figures also show that the change in pressure drop is high in the stenotic region and there

is a maximum alteration of blood flow noticed in the peripheral layer due to stenosis thickness.

,

A B

Figure 7. A: Peripheral layer shear stress (τp) in an artery with and with-

out stenosis by variation of radius of stenosis (δp). B: Core layer shear stress

(τ c) in an artery with and without stenosis by variation of radius of stenosis

(δc).

4.4. Peripheral and Core layer Shear Stress in Blood Flow. Figure 7A depicts the effect of peripheral

stenosis on shear stress in the peripheral wall in the regions with and without stenosis. The other parameters,

peripheral viscosity and volumetric flux rate in the peripheral layer are kept constant. Maximum height of

the stenosis in peripheral layer (δp) is kept 0.3 mm. We can see from the figure if there are no stenosis shear

stress seems uniform. The shear stress in the peripheral layer increases from 15 pa to 38 pa approximately

when the peripheral stenosis increases from 0 to 0.3 mm. In the region of the artery containing stenosis, shear

stress increases with an increase in height of stenosis. Shear stress on the maximum height of peripheral

stenosis is maximum and that is 38 pa.
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Figure 7B describes the effect of core stenosis (δc) on core shear stress (τc). In the part of the artery if there

is no stenosis only a small change in shear stress is seen and is denoted by a red line which is almost straight.

. We have taken core stenosis height is (δc) is 0.2 mm. In this case also as the stenosis increases from 0.0

mm to 0.2 mm, the core shear stress increase from 2.8 pa to 7.5 pa. In the stenotic region, the shear stress

in the core increases with an increase in core stenosis. Here core viscosity (µc = 0.1) and peripheral viscosity

(µp = 0.5) are kept constant, length of the stenosis is taken 1 mm. As we see in the figures, shear stress is

immensely affected by stenosis. The effect of stenosis size on shear stress is higher in the peripheral layer.

This shows the presence of stenosis, shear stress brings significant alteration in the flow field and this effect

is more in the peripheral layer as compared to the core layer.
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5. Summary

In this article, the study focused on the analysis of steady, laminar blood flow through an artery in

presence of the mild stenosis, consisting inner core layer of red blood cells and outer peripheral layer of

plasma. The two-layered flow behavior of blood through a stenosed artery, velocity profile and volumetric

flow rate, pressure gradient, and shear stress on the surface of stenosis with various values of viscosity

coefficients have been analyzed. Significantly, analytical evaluation of the pressure drop and shear stress

with and without stenosis are performed. There is a remarkable difference in the velocity variation in both

layers. Maximum velocity attains at the center of the artery and decreases gradually towards the inner wall.

It is observed that the velocity is increased with the increasing stenosis height and decreases for increasing

coefficient of viscosity. The volumetric flow rate declines with the rise of stenotic thickness and less affected

by the core layer viscosity as compared to peripheral layer viscosity. Further, volumetric flow rate rises with

vessel radius. It is revealed that pressure drop is more in peripheral layer against thickness of stenosis with

the radius of artery as compared to core layer and proportional relation to coefficient of viscosity. Higher

viscous fluid accelerates a higher pressure gradient. Marginal change of pressure drop can be seen in the

absence of stenosis in an artery. The result shows, the presence of stenosis, pressure drop brings significant

alteration in the flow field and this effect is more in the peripheral layer as compare to core layer. Shear

stress shows similar behavior, consequently, in the course of time, stenosis deviates the peripheral layer and

reduce core layer. The results of the present analysis draw attention to the application and understanding

of the blood flow mechanism in a two-layered model and provide decisive information in diagnosing and

treating arterial stenosis.
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