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Abstract: We solve the two - dimensional mixed form Kirchhoff transformed Richards

equation numerically using Crank - Nicolson scheme. This procedure has been integrated

using cylindrical coordinates in an axially symmetric diffusion of flow in a homogeneous,

isotropic porous medium. The soil has uniform hydraulic conductivity and no source or

sink. The framework is cylindrical with a finite difference structured mesh. This procedure

is particularly targeted at infiltration into dry soil, drainage, perched water table and flow

through homogeneous materials. However, it is also applicable to any process involving

flow through porous medium. The scheme we used is more accurate, comprehensive and is

computationally efficient. It may provide a suitable basis for the implementation in large

scale.
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1. Introduction

The unsaturated zone is the region between the soil surface and the groundwater table

where many physical phenomena, such as infiltration, evaporation, groundwater recharge,

soil moisture storage, and others, take place. In recent years, predicting fluid movement in

this zone has become an emerging problem in soil mechanics (rainfall-induced landslides,

floods, etc.), fluid mechanics, agricultural engineering, environmental engineering, and other

fields. The flow in the unsaturated zone involves a two-phase flow of air and water. Since

the air phase is continuous and at atmospheric pressure, we consider only the flow of water.

For transient two-dimensional flow in an isotropic and homogeneous medium, the governing

equations are Darcy’s law and the mass conservation law. Darcy’s law relates the flow

velocity of water to the gradient of hydraulic potential, and the mass conservation law

ensures that the total mass of water in the system remains constant. Additionally, we

neglect osmotic and thermo-osmotic effects and assume that water density varies only with

capillary pressure. Under these assumptions, the fluid motion obeyed the classical Richards

equation.
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Different forms of Richards equation can be written with ψ (the pressure head), or

θ (the volumetric moisture content) as the dependent variable. We consider the Richards

equation in the following (mixed) form with no source as [1].

(1.1)
∂θ

∂t
−∇ · (K(ψ)∇ψ) +

∂K

∂z
= 0,

where θ (the volumetric moisture content), ψ(the pressure head), K(ψ) is the unsaturated

hydraulic conductivity

We prefer the constitutive relationship between θ = θ(x, y, z, t) and ψ = ψ(x, y, z, t)

due to by Haverkamp et al. [2] allows to express the Richards equation (1.1) with a single

dependent variable ψ or θ.

The hydraulic conductivity K(ψ) describes the ease with which water can move through

pore space, and depends on the intrinsic permeability of the material and the properties of

fluid such as degree of saturation, density and the viscosity [3]. There are many empirical

formulations for the hydraulic conductivity K(ψ) and the moisture content θ(ψ) functions.

We use the following popular model from groundwater hydrology due to Haverkamp et al.

[2] and express these constitutive relations as the continuous functions of ψ.

(1.2) K(ψ) = Ks
A

α+ |ψ|γ
, θ(ψ) = θr +

α(θs − θr)
α+ |ψ|β

,

where θs = 0.287 and θr = 0.075 represent the saturated and residual moisture content

respectively, Ks = 34 corresponds to the saturated hydraulic conductivity, and A = 1.175×
106, α = 1.611× 106, β = 3.96, γ = 4.74 are dimensionless soil parameters. These data are

used to describe the infiltration process in soil.

Richards equation is highly nonlinear partial differential equation. Because of its non-

linear behavior, analytic solutions are limited to some simplified cases with no practical

importance. Hence numerical approximations are used to solve the unsaturated flow equa-

tion. Approximated solutions are computed using discretization methods that depends on

approximation techniques for space and time derivatives, and the solution method for the

nonlinear system of discretization equations. The standard approximations that are applied

to the spatial domain are finite difference, finite element and finite volume methods. They

are usually applied on a fixed spatial grid and also in an adaptive approach. The standard

temporal derivative approximation method is the Euler method. Picard, modified Picard,

and Newton methods are the most frequently used methods to deal with the nonlinearity

of the Richards equation [4]. The linearization of Richards equation yields to a system of

linear algebraic equations which is typically solved by using direct method for one dimen-

sional problem and iterative approach for large linear systems arising from higher dimension

problems.

The numerical solution of Richards equation is still a subject of great interest, mainly,

on focusing to the reduction of computational cost to achieve the robust and more accurate

solution. In addition, real world application requires the combine analysis with soil moisture

dynamics with contamination transport, growth and decay of microorganisms in transport

phenomenon, energy balance and rain runoff which make the computational problem of
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solving the Richards equation more complex. To avoid such type of stumbling block the

solution techniques of Richards equation have to be extended, to much large computational

domains and implementing to high performance computing code.

2. Background

Numerical solutions of Richards equation has a significant history in the fields of soil

science and ground water hydrology. General overviews and thorough reviews of the liter-

ature may be found in the works of Nielsen et al. and Milly [5, 6]. Generally, numerical

solutions are either the h–based or θ-based form of Richards equation. A number of finite

difference, finite element and finite volume solution schemes [2][7, 8, 9, 10, 11, 12] have been

used for the simulation of these form of the equation. To drive the numerical simulation in

mixed form of Richards equation [4, 13] play an important role in the history of soil science.

They used collation approximation in space and an alternating-direction version namely a

”quasi-Newton” method and ”modified Picard” method. Zarba, R.L. [14] used the modi-

fied Picard iteration method with both finite difference and finite element approximation in

space. Ross et al.[15] used the Kirchhoff transformation to simulate water flow. Gottardi

and Venutelli [16] presented a computer program, which integrates the three standard form

of Richards equation using finite difference and finite element method. Huang et al. [17]

proposed a new convergence criterion for the modified Picard iteration method. Gottardi

et al. [18] used moving finite element model for one–dimensional solution. The stability

analysis of fully implicit finite element scheme with Kirchhoff transform to this equation in

Radu et al. [19] and a linearized finite difference scheme is presented in [20] also a numerical

solution of Richards equation: a simple method adaptable in parallel computing is studied

in [21]. An explicit stabilized Runge - Kutta - Legendre Super time - stepping scheme for

the solution of Richards equation is studied in [22].

In this paper, we use Kirchhoff integral transform to reduce the highly nonlinear equa-

tion to a functional linear parabolic equation and solve it numerically.

The purpose of this paper is to present a reliable and accurate numerical scheme which is

able to solve the two dimensional Kirchhoff transformed Richards equation, where numerical

solution converges rapidly to the theoretically correct solution. The numerical solution is

able to handle a short duration of infiltration and is relatively easier to implement.

This paper is organized as follows: In section 3, we present Kirchhoff transformation to

(spatially) linearize the Richards equation. In section 4, we present the numerical methods

based on finite difference method (CN). In section 5, we solve two test examples and compare

the results. Finally in section 6, we conclude our results.

3. Model Description

We consider Richards equation (1.1), a diffusion process taking place in a vertical ditch

with radius r. We assume axi - symmetry such that θ is just a function of r, ϑ, z and t, r

and z being the radial distance and axial distance from the center axis of the ditch to a

point. For axi - symmetry, we take the cylindrical coordinates, r,ϑ, z where z is the axial
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direction and (r, ϑ) are the polar coordinates in a cross section. From the relation x = rcosϑ,

y = rsinϑ and z = z, Richards equation as cylindrical coordinates, in axi symmetry form

is:

(3.1)
∂θ

∂t
=

1

r

∂

∂r

(
rK(ψ)

∂ψ

∂r

)
+

∂

∂z

(
K(ψ)

∂ψ

∂z

)
− ∂K(ψ)

∂z

where r and z represent radial and axial direction respectively.

Richards equation (3.1) is typically used to simulate infiltration experiments (in both

laboratory and field scale). These experiments begin in a cylindrical ditch with a dry soil

and then water is poured on top of the ground surface, showing a clear connection with the

Darcy’s law. We assume that the infiltration with known surface flux does not exceed the

infiltration intensity, and does not generate runoff. That is, we use the following initial and

boundary conditions.

(3.2)



ψ(r, z, 0) = ψ0(r, z), Rin ≤ r ≤ Rout, 0 ≤ z ≤ Ztop
K(ψ)−K(ψ)

∂ψ

∂z
= q(t), r > 0 z = 0, t > 0

ψ(r, Zbot, t) = β(t), r > 0, t > 0
∂ψ

∂r
= 0, r = Rout , z > 0, t > 0

ψ(Rin, Z, t) = β1(t), t > 0.

3.1. Kirchhoff Integral Transform. We use Kirchhoff integral transformation in equa-

tion (3.1), for this, we let h = ψ − z and define

(3.3) φ(h) =

∫ h

0
K̄(λ)dλ.

Since K(h) > 0 from (1.2), the function φ(h) is strictly increasing with K̄(h) = K(ψ).

Taking derivative of both sides of the transformation with respect to r and z, we obtain:

(3.4)
∂φ

∂r
=
∂φ

∂h

∂h

∂r
= K̄(h)

∂(ψ − z)
∂r

= K̄(h)
∂ψ

∂r
= K(ψ)

∂ψ

∂r
.

Again taking derivative of (3.4) with respect to r,

(3.5)
∂2φ

∂r2
=

∂

∂r
(K(ψ)

∂ψ

∂r
)

and

(3.6)
∂φ

∂z
=
∂φ

∂h

∂h

∂z
= K̄(h)

∂(ψ − z)
∂z

= K(ψ)(
∂ψ

∂z
− 1) = K(ψ)

∂ψ

∂z
−K(ψ)

Again differentiating of equation (3.6),

(3.7)
∂2φ

∂z2
=
∂
(
K(ψ)∂ψ∂z

)
∂z

− ∂

∂z
(K(ψ)) .

Using the equations (3.4),(3.5) and (3.7), the Richards equation (3.1), takes the form
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(3.8)
∂θ

∂t
=
∂2φ

∂r2
+

1

r
(
∂φ

∂r
) +

∂2φ

∂z2

with θ̄(φ) = θ(h). The corresponding initial and boundary conditions for the transformed

equation (3.8) take the following form

(3.9)



φ(r, z, 0) = φ0(r, z), Rin ≤ r ≤ Rout 0 ≤ z ≤ Ztop
∂φ

∂z
= q̄(t), r > 0 z = 0, t > 0

φ(r, Zbot, t) = β̄(t), r > 0, t > 0
∂φ

∂r
= 0, r = Rout , z > 0, t > 0

φ(Rin, Z, t) = β̄1(t), t > 0

The Kirchhoff transformation transformed the nonlinear equation (3.1) to a nonlinear par-

abolic equation (3.8). Also we note that the Kirchhoff transformation preserves the unique-

ness of the solution for the transformed problem.

4. Numerical Method

We have the transformed equation is in two different state variables. To solve the

transformed equation (3.8) numerically with the prescribed initial and boundary conditions

(3.9), it is feasible to have a single state variable. For this, θ and φ are assumed as single

valued continuous functions of one another, and arranging these variables as

(4.1)
∂θ

∂t
=
∂θ

∂φ

∂φ

∂t
= (

1
∂φ
∂θ

)
∂φ

∂t
,

∂φ

∂θ
=
∂φ

∂h

∂h

∂θ
.

Differentiating (1.2) with respect to h, we get

(4.2)
∂θ

∂h
= α(θs − θr)(α+ |h|β)−2.β|h|β−1,

∂φ

∂h
= K̄(h) = K(ψ).

Using (4.1) and (4.2), the transformed Richards equation (3.8) takes the form:

(4.3) c(φ)
∂φ

∂t
=
∂2φ

∂r2
+

1

r

∂φ

∂r
+
∂2φ

∂z2
,

where the functional coefficient c depends on φ through h as

(4.4) c(φ(h)) =
αβ(θs − θr)|h|β−1

K̄(h)(α+ |h|β)2
.

4.1. Finite Difference Discretization. We set up a two dimensional (r, z) uniform grid

for an axi–symmetric problem in the cylinder geometry by subdividing the radial length

[Rn, Rout] into Mr subintervals of width ∆r = Rout−Rin
Mr

and the height [0, Ztop] into Mz

subintervals of width ∆z =
Ztop

Mz
. We construct a grid (ri, zj , tn) with ri = i∆r, i =
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0, 1, 2, ...,Mr, zj = j∆z,j = 0, 1, 2, ...,Mz, and tn = n∆t, n = 1, 2, ...., N . Let φni,j de-

note φ(ri, zj , tn). The partial differential equation (4.3) can be approximated using forward

difference in time and central difference in space as [23]

∂φ

∂t

∣∣∣∣
(rl,zj ,tn)

≈
φn+1
i,j − φni,j

∆t
,

∂φ

∂r

∣∣∣∣
(rl,zj ,tn)

≈
φni+1,j − φni−1,j

2∆r
.

∂2φ

∂r2

∣∣∣∣
(rl,zj ,tn)

≈
φni−1,j − 2φni,j + φni+1,j

∆r2
,

∂2φ

∂z2

∣∣∣∣
(rl,zj ,tn)

≈
φni,j−1 − 2φni,j + φni,j+1

∆z2
(4.5)

using a weighted average of the derivatives (
∂φ

∂r
, ∂2φ
∂r2

, ∂2φ
∂z2

) at a two time levels, tn and tn+1

using Crank - Nicolson (CN) scheme equation (4.3) can be discretized as

φn+1
i,j − φni,j

∆t
=

1

2cni,j(∆r)
2

[
φn+1
i−1,j − 2φn+1

i,j + φn+1
i+1,j + φni−1,j − 2φni,j + φni+1,j

]
(4.6)

+
1

2cni,j(∆z)
2

[
φn+1
i,j−1 − 2φn+1

i,j + φn+1
i,j+1 + φni,j−1 − 2φni,j + φni,j+1

]
+

1

4ricni,j(∆r)

[
φn+1
i+1,j − φ

n+1
i−1,j + φni+1,j − φni−1,j

]
We collect the unknowns on the left hand side:

−(Fr −
F

ri
)φn+1
i−1,j + (1 + 2Fr + 2Fz)φ

n+1
i,j − (Fr +

F

ri
)φn+1
i+1,j − Fz(φ

n+1
i,j−1 + φn+1

i,j+1)(4.7)

= (Fr −
F

ri
)φni−1,j + (1− 2Fr − 2Fz)φ

n
i,j + (Fr +

F

ri
)φni+1,j − Fz(φni,j−1 + φni,j+1),

where Fr = ∆t
2cni,j(∆r)2

, Fz = ∆t
2cni,j(∆z)2

F = ∆t
4cni,j(∆r) .

Stability analysis of this equation (4.7) can be found in our previous work Timsina, R.C.

et al. [22]. The equation (4.7) are coupled at the new time level n + 1. That is, we must

solve a system of (linear) algebraic equations, which we will write as Bc = d, where B is

the coefficient matrix, c is the vector of unknowns, d is the right hand–side.

To solve the above system of linear equations, we have a matrix system Bc = d, where

the solution vector c must have one index. For this, we need a numbering of the unknowns

with one index, not two as used in the mesh. We introduce a mapping position(i, j) = v(i, j)

from a mesh point with indices (i, j) to the corresponding unknown u in the equation system.

u = v(i, j) = j(Vr + 1) + i, for i = 0, 1, 2, · · · , Vr, j = 0, 1, 2, ..., Vz,

With this mapping, we number the points along the radial direction starting with z = 0

and then filled one mesh line at a time. In another way

u = v(i, j) = i(Vz + 1) + j, for i = 0, 1, 2, · · · , Vr, j = 0, 1, 2, · · · , Vz.

with r = 0 and then filled one mesh line at a time. From this we can get the general feature

of the coefficient matrix obtained from the discretized equation (4.7).

Now Bu,ν be the value of element (u, ν) in the coefficient matrix B, where u and

ν are the numbering of the unknowns in the equation system. The then Bu,u = 1 for

u = ν corresponding to the all known boundary values. u be v(i, j), i.e., the single index
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corresponding to the mesh point (i, j). Then, for interior mesh along with boundary, we

have

Bv(i,j),v(i,j) = Bu,u = 1 + (Fr + Fz),

Bu,v(i−1,j) = Bu,u−1 = −Fr,

Bu,v(i+1,j) = Bu,u+1 = −Fr
Bu,v(i,j−1) = Bu,u−(Vz+1) = −Fz
Bu,v(i,j+1) = Bu,u+(Vz+1) = −Fz.

The corresponding right hand side vector in the equation system has the entries du, where

P numbers the equations with the given boundary values.

The above mention algorithm can be used to update the transformed variable φni,j to its

value in the next time level φn+1
i,j . But we cannot advance the algorithm to the next time level

φn+2
i,j without evaluating the function c(φn+1

i,j ) which requires computing the intermediate

variable hn+1
i,j . For this, we employ the equation (4.2) which can be approximated as

(4.8) hn+1
i,j = hni,j +

φn+1
i,j − φni,j
K̄(hni,j)

.

5. Simulation Results

5.1. Experimental Setup. The numerical procedure developed in the previous section is

written in python and ran on a laptop with 2.8 GHz Quad–Core Intel Core i7 processor. We

considered two specific infiltration experiments and inspect the behavior of the numerical

scheme presented above. For the first case the setup consisted of an annulus ditch having

length 70 cm in the axial direction and 100 cm in radial direction. The annulus was filled

completely with sandy soil. We use the soil parameters and characteristics relationship

between the soil moisture content θ(ψ) and the hydraulic conductivity K(ψ) from the work

of Haverkamp et al.[2].

K(ψ) = Ks
A

α+ |ψ|γ
=

34× 1.175× 106

1.175× 106 + |ψ|4.74

θ(ψ) = θr +
α(θs − θr)
α+ |ψ|β

= 0.075 +
1.611× 106 × (0.287− 0.075)

1.611× 106 + |ψ|3.96
(5.1)

The simulation starts with a uniform saturation θ = 0.1 cm3/cm3 and a constant water

head ψ = −61.5 cm is maintained at the bottom boundary z = Zbot. For the upper

boundary z = Ztop at the soil surface, a constant flux q(t) = 13.69 cm/hr for t < 0.7hr and

zero normal flux condition for t > 0.7 hr and for curved surface of the annulus zero flux

boundary condition is maintained. For second case we considered that the same wetting

flux for r > r
2 and a constant drainage flux q(t) = −.0099 cm/hr for r < r

2 . To compute

the approximate solution using the Crank–Nicolson scheme, we have used a uniform spatial

step size ∆z = 2 cm on axial direction and a step size of ∆z = 2 cm on radial direction and

the simulation was run for 0.75 hr.
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5.2. Result and Discussion. The Kirchhoff transformed one dimensional model was em-

ployed to simulate vertical water infiltration into an unsaturated homogeneous porous

medium. Numerical experiments were carried out by using sand column (proposed by

Haverkamp et al.) with finite difference schemes (FTCS, BTCS, CN and RKL). Since we

do not have exact solution we use numerical solution obtain from above (RKL) finite dif-

ference scheme for one dimensional as the reference solution Timsina, R. C. et al. [22] for

numerical experiment of two dimensional water infiltration. Fig. (1) shows the variation of

volumetric moisture content in sand for one dimension, as discussed in [22]. In this numer-

Figure 1. Variational trend of moisture content in depth (one dimension case)

.

ical experiment, the functions used for the hydraulic conductivity and the water content as

in one dimensional case were taken from Haverkamp et al. [2]

The first two dimensional example is an unsaturated flow into a region of sandy soil.

For this we suppose the domain is specified to be an annulus, rinner ≤ r ≤ router with

rinner strictly greater than zero, other than a disk. The annular domain consists of 70 cm

in length with 100 cm of annular radius. We suppose it vertically downward where z axis

taken as downward positive with a constant water head ψ = −61.5cm at left (Dirichlet)

boundary condition r = Rin as dummy. A constant flux boundary condition (Neumann)

on the right r = Rout is taken and a constant water head ψ = −61.5 cm at the bottom

boundary z = Zbottom. At the upper boundary z = 0 (the soil surface), a constant flux

q(t) = 13.69 cm/hr for t < 0.7hr and zero normal flux condition for t > 0.7hr. The solution

domain was meshed using a spatial step size of ∆z = 2cm on axial direction and a step size

of ∆r = 2.5 cm on radial direction and the simulation was run for 1 hr. The longitudinal

water contain profiles and radial water contain profiles at time 0 hr and some others time

are shown in figure (2)top. From this figure it is possible to note that the residual water

contain at the bottom of the annulus is reached when time t is about .50 hr The moisture

content contours are shown in figure (4)and corresponding surface plots of moisture content

is in figure (3) left.

For the second example we considered the annulus with same dimensions and the

numerical set up are the same for inner, outer and bottom of the domain. But, at the
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Figure 2. Longitudinal profile of soil moisture θ(z) at r= 50 cm(top left),

radial profile of soil moisture θ(z) at z= 35 cm(top right), Longitudinal

profile of soil moisture θ(z) at r= 25 cm(bottom left), radial profile of soil

moisture θ(z) at z= 35 cm(bottom right)

.

top, i.e., on the soil surface we make a constant flux of drainage q(t) = −0.0099cm/hr for

t < 0.7hr and zero normal flux condition for t > 0.7hr in half of the domain (for r = r
2)

and for the rest a constant flux of q(t) = 13.69cm/hr for t < 0.7hr and zero normal flux

condition for t > 0.7hr. The longitudinal water contain profiles and radial water contain

profiles at time 0 hr and some others time are shown in figure (2) bottom. From this figure

it is possible to note that the residual water contain at the bottom of the annulus is reached

when time t is about .30 hr for inner half circular part of the annulus. The moisture content

contours are shown in figure (3) left and corresponding surface plots of moisture content

are shown in figure (5).

Figure 3. Soil Moisture θ(r, z) at t = 0.75sec for r = Rout(left), Soil Mois-

ture θ(r, z) at t = 0.75sec for r = Rout/2(right)



90 A NUMERICAL SOLUTION FOR FLUID FLOW IN UNSATURATED..,

Figure 4. Soil Moisture θ(r, z) at t = 0.1875sec for r = Rout( top left),

Soil Moisture θ(r, z) at t = 0.375sec for r = Rout(top right), Soil Moisture

θ(r, z) at t = 0.5625sec for r = Rout(bottom left), Soil Moisture θ(r, z) at

t = 0.75sec for r = Rout(bottom right)

.

Figure 5. Soil Moisture θ(r, z) at t = 0.1875sec for r = Rout/2( top left),

Soil Moisture θ(r, z) at t = 0.375sec for r = Rout/2(top right), Soil Moisture

θ(r, z) at t = 0.5625sec for r = Rout/2(bottom left), Soil Moisture θ(r, z) at

t = 0.75sec for r = Rout/2(bottom right)

.

6. Conclusion

In this work, we considered two dimensional Richards equation (a highly nonlinear

degenerate parabolic partial differential equation) and solved it numerically. Also this work

is based on two illustrative numerical examples in two dimension, with realistic parame-

ters. We implemented Crank - Nicolson finite difference scheme. The work presented here
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describes and verifies the employment and accuracy of Crank–Nicolson scheme to simulate

flow in unsaturated porous media in axi symmetrical cylindrical sand ditch. However, this

work presented a versatile numerical model which was able to solve the two dimensional

Richards equation and the findings are converges to the theoretical analysis also the find-

ings are in line with one dimensional approaches [22]. Figures 1 and 2 depicted that the

numerical simulations results for the same infiltration experiment as in one dimension im-

posing, zero flux boundary conditions in the lateral boundary mimic the results from the

one dimensional model. That is the longitudinal profile are in line with that of the one

dimensional model. The numerical method was able to handle short duration infiltration

and was relatively easy to implement. This work can be extended to achieve to accurate

solution to heterogeneous soils with abruptly changing wetness conditions.
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