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ABSTRACT. The magneto-micropolar equations model the motion of electrically conduct-
ing micropolar fluids in the presence of a magnetic field. These equations have been the fo-
cus of numerous analytical, experimental, and numerical investigations. One fundamental
problem concerning these equations is whether their classical solutions are globally regular
for all time or if they develop finite time singularities. The global regularity problem can be
particularly challenging when there is only partial dissipation. In this paper, we study the
2D incompressible magneto-micropolar equations with partial dissipation and prove two
new regularity results. The first result addresses a weak solution, and the second result es-
tablishes global regularity criteria. As a consequence, we are able to single out one special
partial dissipation case and establish the global regularity if (0yu1, dyuz) € L™ ([0,7],R?).
The proofs of our main results rely on anisotropic Sobolev-type inequalities and the ap-

propriate combination and cancellation of terms.
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1. INTRODUCTION

The standard 3D incompressible magneto-micropolar equations can be written as

du+ (u-V)u+V(p+ %) = (u+ x)Au+ (b- V)b +2xV X w,
b+ (u-V)b=vAb+ (b-V)u,

Ow~+ (u-Vw+ 2xyw = kAw + (a+ 8)VV - w+ 2xV x u,
V-u=0, V-b=0,

(1.1)

where, for x € R? and t > 0, u = u(x,t),b = b(x,t),w = w(x,t) and p = p(x,t) denote the
velocity field, the magnetic field, the micro-rotation field and the pressure respectively, and
u denotes the kinematic viscosity, v the magnetic diffusivity, x the vortex viscosity, and «,

B and k the angular viscosities.
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The 3D magneto-micropolar equations reduce to the 2D magneto-micropolar equations

when

U = (ul(xvyvt)aUZ(xvyvt)aO)v b= (bl(mayat))bQ(x)yvt)ao))
w=(0,0,w(x,y,t)), w=mn(x,y,t),

where (7,y) € R? and we have written 7 = p+%|b\2. The 2D magneto-micropolar equations
can be written as

Ou+ (u-Vu+Vr = (u+ x)Au+ (b- V)b +2xV X w,

Ob+ (u- V)b =vAb+ (b- V)u,

Ow + (u- Vw4 2xyw = kAw + 2xV X u,

V-u=0, V-b=0,

(1.2)

where u = (u1,u2), b = (b1,b2), V x w = (—0yw, Opw) and V X u = Oyus — Oyu;.

A generalization of the 2D magneto-micropolar equations can be written as

Orut + (u- V)uy + 0,1 = p110z2u1 + p120yyur + (b - V)by — 2x0yw,
Orug + (u - V)ug + Oy = f121025u2 + p1220yyu2 + (b - V)ba + 2x0,w,
Oib1 + (u . V)bl = 11105501 + Vlgayybl -+ (b . V)ul,
(1.3) 8tb2 + (U . V)bz = 1/218sz2 + I/Qzayybg + (b . V)Ug,

0w + (u - V)w + 2xw = K10zpw + K2Oyyw + 2XV X u,

V-u=0, V-b=0,
 u(7,y,0) = uo(z,y), b(z,y,0) = bo(x,y), w(z,y,0) = wo(z,y).

If p11 = p12 = po1 = po1 = p, Vi1 = vig = V91 = o1 = v, and k1 = kg = K, then
reduces to the standard magneto-micropolar equations . For notational convenience,
we set y = % for the rest of the paper.
The equations for 2 = V X u, the current density j = V x b, and Vw can be expressed as
(1.4)
(U +u-VQ = —p110pmyus — f1120yyyu1 + 121 0zzsuz + p200syyus + (b-V)j — Aw,
Jt+u-Vj= —Vllaxwybl — Vlgayyybl + 191 0zabo + Vggaxyybg +b-VQ

+20,.b1 (81112 + Gyul) — 26xu1(6xb2 + Oybl),
OVw + V(u - Vw) + Vw = k1 Vwy, + keVwy, + VQ,
V-u=0, V-b=0.

The above generalization can model the motion of anisotropic fluids for which the diffusion
properties in different directions are different. The system allows us to explore the
smoothing effects of various partial dissipations.

The mathematical study of the magneto-micropolar equations started in the seventies and
has been continued by many authors (see, e.g., [L, 2, 3], 6l [7, 9} 10} 1T} 12, 15} 16}, 17, 18] and
references therein). Recent efforts have focused on addressing the well-posedness problem
and studying various asymptotic behaviors. In the work of Yamazaki [I7], the author
obtained the global regularity of the 2D magneto-micropolar equation with zero angular
viscosity, namely with kK = 0 and other coefficients being positive. Another partial

dissipation case for the 2D magneto-micropolar equation was studied in [5].
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Global regularity has been established for the following three cases by D. Regmi and J. Wu
in their work [14].

o i1 =p =0, vy =1202=0, Ke=0, ppao=pun =1, kK =v11 =r12=1,
e i1 =p12=1, w1 =199=0, K2=0, pog=po =0, kK1 =v11 =r12=1,

e g =poo =1, vy =199 =0, Ko=0, p1=po1 =0, Ki=v11=r12=1

In addition, the global regularity of the following two cases has been settled recently by Y.
Guo and H. Shang in [§].

e i1 =po =0, vy =1209=0, K1 =0, pao=pn =1, kKy=v11 =v19=1,

e pp1=po1 =1, vio=vo1 =1, kKo=1, po=pxp =0, K =v11=r0=0

Furthermore, the global regularity for the following case has been stablished in [I3] by
D. Regmi.

o i1 =p12=0, 1 =121=0, K1 =0, por=px =1, kKy=ri2=re =1

In this paper, we consider the following magneto-micropolar equations with partial

dissipations.
Orur + (u - V)uy 4+ 0, = (b- V)b — Oyw,
dhug + (u - V)ug + Oym = Oggug + (b V)ba + dpw,
by + (u . V)bl = ayybl + (b . V)ul,

(1.5) O¢ba + (u - V)ba = Oyyba + (b- V)ug,

Ow~+ (u- Vw+w=0yw+V xu,

V-u=0, V-b=0,

[ u(z,9,0) = uo(z,y), b(z,y,0) = bo(,y), w(z,y,0) = wo(2,y).

Whether the classical solutions of is globally regular for all time or they develop fi-

nite time singularities is an unsolved problem in fluid dynamics. In fact, this problem is

extremely hard because the dissipation is not enough to control the non-linear terms.

In this paper, we prove the following new results related to regularity of the solution;

the first result is about a weak solution and the second result is global regularity criteria.

Theorem 1.1. Assume (ug,bo,wo) € H'(R?), and V -ug = V - by = 0. Then has a
global weak solution (u,b,w) satisfying, for any T > 0,

(u,b,w) € L2([0,T]; H'(R?))
provided fOT |lug ||%, dt < oco.

Theorem 1.2. Assume (ug,bg,wp) € H*(R?), and V -ug = V -bg = 0. Then has a
global solution (u,b,w) satisfying, for any T > 0,

(u,b,w) € L]0, T); HX(R?))
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provided fOT |0y, Oyuz||oo dt < oco.

As a consequence, the above regularity conditions helps in establishing the well-posedness

of the problem and it opens the future research directions.

The main idea to establish the existence and regularity results consists of two steps.
First step is to show local well-posedness and the second step is extending the local solution
into a global one by obtaining global (in time) a priori bounds. The local well-posedness
of the above system is well known. The main difficulty is global a priori bounds. Thus
we mainly concentrate on the global bounds. The rest of this paper is divided into four
sections. The third and final sections are devoted to the proof of the theorems [I.1] and

2. PRELIMINARIES

To simplify the notation, we will write || f||2 for || f||z2, [ f for [g. f dxdy and 2 f, 0, f
or f, as the first partial derivative, and % or O f as the second partial throughout the
rest of this paper.

The following anisotropic type Sobolev inequality will be frequently used. Its proof can
be found in [3].

Lemma 2.1. If f,g,h,0,9,0,h € L*(R?), then

1 1 1 1
(2.1) / /R 1f gl dwdy < 1712 9113 19,915 113 No:A13

where C' is a constant.

The following simple fact on the boundedness of Riesz transforms will also be used. Its

proof can be found in [4]
Lemma 2.2. Let f be divergence-free vector field such that Vf € LP for p € (1,00). Then
there exists a pure constant C > 0 (independent of p) such that

C p?
p—1

IV fllr < IV % fllzr.

3. GLOBAL L2-BOUND.

This section proves the global L2-bound. More precisely, we prove the following theo-

rem.

Theorem 3.1. Assume that (ug,bo,wo) satisfies the condition stated in Theorem . Let
(u,b,w) be the corresponding solution of . Then for any T > 0, (u,b,w) obeys the
following global L?-bound,

T
)22 + B[22 + w(t) 22 + / 10yus | 2adr

T T
4 /0 18,b1 (), 8,ba () |2 + /0 (18y0(r)22)dr < C(|(uo, boy w0)|12)
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Proof. Taking the L?-inner product of (u,b,w) with (1.5)), respectively, yields

(3.1) 5 7 (lu(t),w(t), b(t)|[3) + [|8zuz (T)[I3 + 118,61 (1), Byba(7) 13
10y ()13 + llw(r)]3 = 2 [/(@cw — Oyur)w dx dy

Applying Holder’s inequality yields

(3.2) 5 7 (lu(t),w(t), b(t)|[3) + [|8zuz ()13 + 118,61 (7), Byba(7) 13
10y ()13 + llw(r)]3 < %(H@zuzl\% +[|0,w]3) + Cllwl3

Gronwall’s inequality then implies

T
lu() 122 + D@12 + lw(®)]Z2 +/0 10 us||72dr

T T
4 /0 18,61 (), 8,ba () |2 + /0 18,w(r)[Zadr < C(l|(uo, bo, w0)|I2)

4. PROOF OF THEOREM [L.1

In this section, we prove the theorem

Proof of Theorem[I.1l To estimate the H'-norm of (u,b,w), we consider the equations of
Q) =V xu, Vw and of the current density j =V x b,

(4.1) Qr +u-VQ = 0pguo+ (b-V)j — Aw,

Jt +u-Vj=—0yyyb1 + Opyyba +b- VQ
(4.2) + 20,01 (0zu2 + Oyur) — 20,11 (0zb2 + Oyb1),
(4.3) OVw + V(u - Vw) + Vw = Vwy, + Vwy, + VQ,

V-u=0, V-b=0.

Dotting (4.1) by Q, (4.2) by j, and (4.3) by Vw we obtain
ld (

2 dt
H0yi |72 + Vel + Ve 13 + 2] Va3

= 2/ [azbl (azu2 + ayul)j — Ozu1 (8a:b2 + aybl)] Jdx dy

190172 + 7172 + IVwl3) + 10a0urll3 + |0uouzll3

—/Vw-Vu-Vw—l—/Vw-VQ
=h+J+Jd3+ 4+ J5+ Js.

Invoking the divergence-free condition, we have

||V8IU2H% = ”812961‘1”% + ||a:cxu2H%
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We now estimate the terms on the right. Since j = 9,b2 — 0,b1,
J1 = 2/8xb13xu28xb2 — 2/3xb181u28yb1
= J11 + Jio.
Applying Lemma Young’s inequality, and the simple fact that
10202]l L2 < [|jllL2, [[0zybrllrz < [0yl L2,

Now we estimate Jq7.

Ji1 <2 ‘/axblaxu28xb2

< C0uballa |00tz 13 10stizl|3 1020113 192y br I3

< Cljlal|Osualld 10ssuzllE 10,5212 110,7113

< !|3mu2||2||3y.7'||2 + C||0yball2 |0z uz]l21]13

< 2 N0eaall3 + 10,313) + CUIBHIE + 02202115
Integrating by parts, we have

J12 S ‘2/83551835162811191

1 1 1 1
Cl18yba12[10zu2 |3 | Ozzuzll3 |0ybrll3 1| Oyyb1 I3

1
Z(H%xWHQ + 19yyb[13) + C(0zual3 + 19yb1[13) 115113

The dissipation is not sufficient to control Js, this is the place where Lemma cannot

apply. Jo can be bounded as

B = ‘— / 1Dy j — / w105y D]

< NualloollBygll2llillz + lluallooll 11Oyl

A

1 , .
< 510,515 + Cllua % 15113
J3, and Jy can be bounded by
J3 < ‘/8{&1 axb2]‘ < / ’(Uanbej + u2arb28y])‘

1 1 1 1
< Cllusl|3 10,3 1513 19,713 195l
1 1 1 1
I G
< 210431 + CllealBlosualBl13

Similarly,

1
Ja ZH@yJHerCHWHzH@ uzI315]13-
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To bound Js5, we use V - u = 0 and integrate by parts to obtain

J5——/Vw'Vu-Vw

=— /amulwx Wy — /Byquywy — /(&Eug + Oyu1 ) wypwy.

The terms on the right can be bounded as

/&culwx Wy <2 '/ug Wiy Wy

1 1 1
< Cllwsyllof[uzl|3 19zw2(l3 w3 lwzy

1

2

2
3 1 1 1

< Cllwayl|3 [[uzll3 [|0zusl|3 |wa|3

1
< glwalls + Clluall3]10suz |3 Vell3,

< llurllool|Ozywl2]| By ]2

= ‘2/u18zyw8yw

’/ Oyuawyy

N

1
0wy ll3 + [ S Vell3

’/ OpUawywy

1 1 1 1
< NOzuzllallwz |3 way 3 [lwy I3 w3

< C||0zuz|l2]|Vwll2[| Vwz |2

1
< 5lIVesll3 + Cllowus| 3] Vewl3.

= ‘—/ulaxywayw - /ulaxwayyw‘

< Jluflool|Ozywll218yell2 + [l [loo [[dzwll2 (| Byyewl2

‘/ Oyuiwawy

< 2 (1Vul3 + 196 13) + Clle 2 Ve
Combining the estimates above, together with Gronwall’s inequalities, we obtain
12013 + 117113 + | Ve 13
+ /Ot (10zzurll3 + 0zzuall3 + 10yill 72 + [ Vewrl3 + Vw3 + IVw]3) dr < C
for any ¢ < T, where C depends on T and the initial H'-norm. This completes the proof
of theorem [l O
5. PROOF OF THEOREM

5.1. H'-BOUND. This section establishes the global H'-bound. More precisely, we have

the following theorem.
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Theorem 5.1. Assume (ug,bo,wo) € HY(R?), and V -ug = V - by = 0. Then has a
global solution (u,b,w) satisfying, for any T > 0,

(u,b,w) € L((0, T]; H' (R?))
provided fOT |0yut, Oyus|| dt < .

Proof of Theorem[5.1]. Dotting (4.1)) by €2, (4.2) by j, and (4.3) by Vw we obtain

Ld
2dt
H10yi 172 + 1 Vey |13 + 2] Va3

_9 / 051Dy us + Dyur) j — Durs (Dubz + D,b1)] jda dy

120122 + 115172 + IVw]13) + [10aatia |13 + [1Orzual3

—/Vw-Vu-Vw—l—/Vw-VQ
=K1+ Ko+ K3+ K4+ K5 + K.

K1, K3 and K4 obey exactly the same bound as Ji, J3 and Jy of the previous section. The
dissipation is not sufficient to apply anisotropic Sobolev inequality for K», so we bound it
differently.

K < ' [ out @w\ < 18yt11 1o |95 ol 2

To bound K35, we use V - v = 0 and integrate by parts to obtain

K5:—/Vw-Vu-Vw

=— /Omulwm Wy — /ayugwywy — /(8;EU2 + Oyu1 ) wypwy.

The following two terms on the right obey the similar bound as in the previous section.

‘/amulwm Wy
'/(%uzwzwy

The following two terms can be bounded differently.

‘/ayugwywy
‘/%ulwwwy

1
< gllwnlls + Clluall3)1 0z |3 Vell3,

1
< &lIVeuls + Closus3] Vell3.

< |19yl [[Ve]l3

< |9y [l Ve3
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Combining the estimates above, together with Gronwall’s inequalities, we obtain
12013 + 11713 + 1 Vel3
t
+ /0 (10zzu1 13 + 10zatuz]|3 + 18yl 72 + Vewyll3 + [ Vwll3) dr < C

for any t < T, where C depends on T and the initial H'-norm. This completes the proof
of theorem [5.11 ]

5.2. Global H?-bound and the proof of Theorem This subsection proves Theo-
rem by establishing the global H2-bound for the solution.

Proof of Theorem[I.4 Taking the L? inner product of (4.1)) with VQ and(4.2) with V3,

and integrating by parts, we obtain

1d , .
§£(IIVQII§ +IVil3) + 188, usl3 + IVl
(5.1) =L+ Lo+ L3+ Ly + Ls + L,
where
LI:—/VQ-VU-Vdedy, LQ:—/Vj-Vu-dexdy,
L3 = Q/VQ -Vb-Vj dzdy, Ly= Q/V[axbl(amug + 0yu1)] - Vj dzdy,
Ly = —Q/V[axul(axbg + aybl)] -Vj dzxdy, L¢ = /AQ Aw dzxdy.

Applying V to (4.3) and taking the L?-inner product with Aw, and integrating by parts,

we obtain

1d
5 318l + 20803+ 28, + 18wl = [ 208w~ [ Au- V)
(5.2) =Le+ L.
Adding (5.1]) and (5.2) yields
1d . .
5 VOB + V1B + 1AwI) + 1A0.ua]3 + 90,513 + 2 Awnl + 20 A0y I3 + | Aw?

=L1+ Lo+ L3+ Lys+ Ls+ 2L+ Lr.
We now estimate L; through L;. We further split L; into 4 terms.
L, = —/VQ-VU-VQdmdy
_ / (0101 (952)? + 0y1420,920,2 + yur 9,20, Q + Byus(9,2)?)
= L+ L2+ L1z + La.

Therefore,

Lll = —/8mul(8:mcu2)2 — /amul(axyiﬂ)Q+2/axulammu28myu1-
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Integration by parts yields
/azul(axxUQ)z =- /axxulazmruanUQ - /3xulazxxu2azu2
= Li11 + L11o,
Li11 and Ly obey the exactly same bound as in [13].
Lt < 180,018 + Cowaua BOwanr |5 10ste.
Lip < iHA@vqu% + C|€|2]|Ozuzl2[| VL3

48
1 2 2
Ly < EII%Q\\% + CllU3 1Ouzu |3 V3.

Li3 and L4 can be bounded differently as
Lz < [|8yu]lo[ VO3
1
L1y < @HayUQHooHVQH%-

Ly and L3 admit the same bound as in th paper [13].

To estimate Lo, we write it out explicitly as
ng—/Vj'Vu-dewdy
=— / (0pu1(025)% + Oyu10350yj + Oyus(0y7)? + pu20,j0yj)
= Loy + Lo + Loz + Loag.

The terms on the right can be bounded as follows.

L21 = ‘_2/U2axjaxyj

1 1 1 1
< Cl|yill2 11023113 |02y 3113 l[uzll3 |0z w213 -

1 , .
< &IV0uill2 + Clluz210xu2]2] V51l

1 1
CllByur 2l 027113 110y 113 |0y 2

Loy <
1 . .
< ZSHVay]H%+C||6yu1”%||vj||%-
Similarly,
1 . .
La3 < 4—8|!V8yJH§+C||u1|!§||QH§IIVJII§.
1 1 1 1
Los < Cll0pusll2l0yjll3 |102yll3 106513 [|Onyll3
< ClQ20Vill2llVOyjlla-
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We now turn to L3. Observe that

The

The

Ly = /@@@m@4+@ﬂm@@j+@9@qn+@Q@@@j

= Lg1+ L3a + L3z + Lsa.

terms on the right can be bounded as follows.
Lo <'/&ﬁ%h%j
1 1 1 1
< Cl|0:2|2]|0:01 13 10220115 |05 | Oyl
< Ol Q2010551113 10,112110:713 19213
< C|025ll12IV Oyl + 110y ll|0=b1]]10:€213
< 4igllvayjllg + C(10:b1]15 + 104115 + D)(IVQII5 + IV413)-

last three terms admit,
1 ) ) .
Lz < ZSHVayjlngrC(Haxsz%JrHayszJrl)(HVQH%JrHVJH§)-
Lz < iHV@ 12+ CU10:b1[13 + 110,513 + DUVLUZ + [V4]12)
I VT yJ 112 =012 yJ 12 2 J2)-
1 . . . .
Ly < Zgllvay3||§+0(\|3y9||§+IIJH2+1)IIVQII§+IIVJH%)-

We now estimate L4.

Ly = 2 / V[0:b1(0zuz + Oyuy)] - Vi dxdy

:2/@@m@m+@mm+%@mmw+wmmww
= L4+ Lyo.

We bound L4 and L4y as follows.

Now

Ly = /8xxblaxu28x] + 8xbla:cru28x] + 8xxb18yu2axj + 8xb18xyula:cj

‘/axzblaxu26z] + 6zmblayu28xj

1 1 1 1
< Cl|0zyball2||dzuz||3 |0zzuz|3 1025113 [|Oryll3
1 1 1 1
+C|Oayball2[|0yual|3 102y uall3 102713 |02y ll3
1 1 1 1
< Cll9yj 121V 0yl |0zull3 IV I3 V313

1 . . .
< =IV0uillz + CU0yil13 + 10:ul2) V5113 + [VL5)-

65
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’/8:56169090“2851:] + a:cblaxyulaxj

1 1 1 1
< C|0zzuzl|2]|0zb1(|3 [|022b1 115 102515 | Owy il 3
1 1 1 1
+C|0zyua [|21102b1 13 || Ozabr (13 10213 | Ozy (|3
V8,415 + C(10zurll3 + 10:b1113 + 10,5115 + D(IVRIS + V4l13).

I

<

W

8

L4o can be written as

Ly = 2 /(8xyb18xUQ + axblanyQ + 8xyb18yu1 + 8xb18yyul)8yj dxdy

= L421 + Lago + Laos + Laoy.
The bounds for the terms on the right are given as follows.

1 1 1 1
CllOzuzll2|Duybr 3 [|Ozyybrl3 19y 113 |02yl

Ly <
< OV,
< 5 IVayil3 + CINBIVIIE
1 1 1 1
Lizs < Cll0ubill3 10eybrl3110uyus 210,313 192 13
< Clil 18,712 10201913 V0,13
< < IVal3 + ClaIBIVAIE + ClilIvel3.
Other terms admit,
1 1 1 1
Liss < Cl0uybrl3 100ybr 13110yt 13 10yt I3 10,311
< &IV + CIRILIViIB + ClaBIVO3.

Laoa < || 0yurlfoo (|0zyb112[10y |2 + [|0201|0yyjll2)

Ls, L¢ and Ly can be bounded exactly as in the paper [13]. We now estimate Ls. More

explicitly, Ls can be written as
Ly = —2/V[8xu1(6xb2 + 8yb1)] - V3 dzdy

S / D [Brtn (Dubs + Dy51)| 0 + By [(Dutis (Duba + Dyb1)|Dyj dardy

= L51 + L52.
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L5 is bounded as follows.
1 1 1 1 ,
Lsy < Cll0puall3[[Ozyurll3 [|022]|3 [|Ozeb2ll3 [|Oyy.ll2
1 1 1 1
+C10zua |3 |0y ur |3 18y b1 (13 102yb1 13 1| Oyy.ill2
1 11 1
ClUz IV 113 1VilI3 1V Oyjll2

IN

1 . ) )
< @!\Vayﬂ\%+CIIQH2IIJH2(HVQH§+!!VJH%)-
L51 contains four terms.
Lsy = -2 /(axmulasz + 8xularxb2 + axmulaybl + axulaxybl)az] dxdy
= Lso1 + Lsoo + Lsoz + Lsoa.
These terms are estimated as follows.

1 _ . . .
Lso1 < 22[IVyilz + C(1uillz + 13112) (IVill2 + IVQLZ).

1 . 2 2 <.
Lz < Zg\lvf?y.?ll% + ClII3 1Dzyun |13 V5113

1 1 1 1
Lszz < Ol 0zaun[|3 (| Ozayrur |3 1850113 [|0ybr |3 11022
1 1 o1
< CllQuylIZ110y113 IV QA2 11713 11V7]12

1 : . .
< 1102203 + Clloys 121Vl + Clilla Vi3

1 1 1 1
Cll0z7 2110z l|3 102y ur (|3 [|Dyybill3 || Dryybrll3

Lsoy <
‘ 1 1 1
< Cloyjll2l15 0zyualls Vi ll5 1V Oyll5
1 . . .
< @llvayjllg+CHayJH§||VQH§+HQ||2\|VJH§~

Lg can be easily bounded.
L¢ = /AQ Aw = /A(@qu — Oyu1)Aw

with

/A@quAw < 180z | Ao, ’/AayulAw' < |Aul2 | Aw, [z
We now estimate the last term L~.
L~ = —/A(u -Vw)Aw = —/A(maw + ugOow) Aw
= —/8mxu18waw—/8mxu28ywAw—/8yyu18mwAw — /8yyu28ywAw

-2 / Ozt OppwAw — 2 / Oru205ywAw — 2 / Oyu1 OpywAw — 2 / Oyu20yywAw
= L7 + Lo+ L7s + L7y + L7s + Ly + L77 + Lg

67
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Now
L ’g /&vxulax(JJAw'
1 1 1 1
< Ol Ozzun|l2]|0pw]|3 |02aw]|3 | Aw]| 3 [ ADyew || 3
1

< g!\ﬁaywllg +C(IVw]3 + |10szu [13) | Aw 3.

Similarly, we obtain

Lz < @(IIA@MHQ + | A0su2|[3) + ClIVwIB(IVQI3 + | Aw]3).

Lrs = ‘—/8uulaa:yWAw — /8yu18wa8yw

< ClOnylla Dyt |13 |9ryus 12 | Al F [ DD 13

+ Y ADyw ]l 9yt 13 100yt 13 100013 10uyeoll3
< CIV Ol By |3 19003 | AwllF | A0,wl13

+ Y Adwl |y 11 VU3 [9a])F V0,013

1
< 1Az + Clloyullz + [Vaywlz + DIV + [[Awlz + [ Vell2).

Similarly
1
L7y E(HA@J“”Q + ([ A8z uz|[3) + CVw[3([VQIE + [ Awl3).
1
L7s < ||A5yW||2+C(HQ||2+||3xxU1H Dl Aw]3.
L76 = ‘—2/8qu8xywAw'
1 1 1 1
< O|Ozywll2l| Aw]|3 ([ Adyw]|3 [| Oz u2ll3 |0z usz |3
1 1 1 1
< C’HV@yszllAWHQ2 [AOyw||3 |0zus||3 V|3
< 48||A5yWH2 + C(IVOywll3 + [19u2ll3) (V3 + | Aw]3).
Ly = ‘—2/8yu18xywAw’

1 1 1 1
< Cllozywllo[[Aw]lZ [AGyw]|3 [|Oyur |3 [|Owyualls
1 1 1 1
< ClVoywli2flAwll [Adywll3 [|0yurll3 (V|3
1
< 1 1A0wls + C (IVOywls + [19,uI3) (IVEI3 + [ Awll3).

1
Lzs < 2l1A0wll3 + CIQY3 + [19zawal|3) | Aw]3-

Collecting the estimates above and applying Gronwall’s inequality, we obtain the desired
global H?-bound.
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T
IVQ3 + [IV4lI3 + IIAWI!§+/(] (1A8zuz )13 + V3y313 + 2l Awe 13 + 2l Awy |13 + | Aw]3) d7 < C

for any t < T, where C depends on 1" and the initial data.
This completes the proof of the Theorem O

6. CONCLUSION

We have investigated the global regularity issue concerning solutions of the 2D magneto-
micropolar equations with partial dissipation. We established that if the velocity field u
satisfies (9yu1, dyug) € L™ ([0,T],R?), then magneto-micropolar equations with partial

dissipation have globally regular solution.
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