The Nepali Math. Sc. Report, Vol. 40, No.1 and 2, 2023, 43-54 DOI: https://doi.org/10.3126/nmsr.v40i1-2.61495 GENERALIZED STATUS HARARY BASED INDICES

N. HARISH 1 AND B. CHALUVARAJU 1

¹ Department of Mathematics, Bangalore University, Jnanabharathi Campus, Bengaluru - 560 056, INDIA E-mail: harish.jaga16@gmail.com E-mail: bcrbub@gmail.com

Abstract: In this article, we initiate the study of generalized status Harary based indices such as k-sum status Harary index, k-product status Harary index and k-difference status Harary index of a non-trivial, undirected, simple connected graph, where k is a positive integer. Here many bounds of the generalized status Harary based indices are obtained and its exact values for some specific families of graphs are found. Also, its relationship with other graphical indices are investigated. In addition that, we explore the comparative analysis of the molecular graphs of paraffin hydrocarbons.

Key Words: Molecular graph; Graphical indices; status index; Harary index; status Harary index. AMS (MOS) Subject Classification. 05C07, 05C09, 05C12.

1. INTRODUCTION

Let G = (V, E) be a simple, finite connected graph with vertex set V(G) = V and E(G) = E edge set. The cordinality of vertices and edges are denoted by |V(G)| = n and |E(G)| = m. The number of vertices are adjacent to u called its degree of the vertex and is denoted by $d_G(u)$. The minimum and maximum degree of the vertex are $\delta(G) = \delta$ and $\Delta(G) = \Delta$. The length of the shortest path between any two vertices u and v called its distance and is denoted by d(u, v). The maximum distance between any pair of vertices in G is called its diameter of a graph G and is denoted by diam(G) = D. The minimum among all the distance between a vertex to all other vertices called its radius and is denoted by rad(G). The sum of its distance from every other vertex of a graph G is called its status [7] and is represented by

(1.1)
$$\sigma(u) = \sum_{u \in V(G)} d(u, v).$$

For more information on graph theoretic notion and terminology, we refer to [5, 8, 27].

Received: May 31, 2023 Accepted: 20 December, 2023 Published Online: 29 December, 2023

Graphical indices	Mathematical Representation					
First status connectivity index, [20]	$S_1(G) = \sum_{\{u,v\} \subseteq V(G)} (\sigma(u) + \sigma(v)).$					
Second status connectivity index, [20]	$S_2(G) = \sum_{\{u,v\} \subseteq V(G)} \sigma(u) \ \sigma(v).$					
Wiener index, [26]	$W(G) = \sum_{\{u,v\}\subseteq V(G)} d(u,v) = \frac{1}{2} \sum_{u\in V(G)} \sigma(u).$					
First Zagreb index, [6]	$M_1(G) = \sum_{uv \in E(G)} d_G(u) + d_G(v)$					
Second Zagreb index, [6]	$M_2(G) = \sum_{uv \in E(G)} d_G(u) \ d_G(v)$					
Generalized Harary index, [4]	$H_k(G) = \sum_{\{u,v\} \subseteq V(G)} \frac{1}{d(u,v)+k}.$					
Irregular index or Albertson index, [2]	$irr(G) = \sum_{uv \in E(G)} d_G(u) - d_G(v) .$					

TABLE 1. Graphical indices and its representation.

Now, we initiate the generalized status Harary based indices as follows: Let G be a non-trivial connected graph. Then

(i) The k-sum Status Harary index of a graph G is defined as

(1.2)
$$SSH_k(G) = \sum_{\{u,v\}\subseteq V(G)} \frac{\left\lfloor \sigma(u) + \sigma(v) \right\rfloor}{d(u,v) + k}.$$

(ii) The k-product Status Harary index of a graph G is defined as

(1.3)
$$PSH_k(G) = \sum_{\{u,v\}\subseteq V(G)} \frac{\sigma(u).\sigma(v)}{d(u,v)+k}.$$

(iii) The k-difference Status Harary index of a graph G is defined as

(1.4)
$$DSH_k(G) = \sum_{u,v \subseteq V(G)} \frac{|\sigma(u) - \sigma(v)|}{d(u,v) + k}.$$

For more details on status of a vertex and their related graphical indices, we refer to [1], [9]-[14], [16]-[19], [21]-[24].

2. Some specific families of graphs

The following easily computed values of generalized status Harary based indices of some specific families of graphs are stated without proof.

Proposition 2.1. Let G be a r-regular graph with $n \ge 3$. Then

(i)
$$SSH_k(G) = \frac{n(n-1)[2(n-1)-r]}{1+k}$$
.
(ii) $PSH_k(G) = \frac{n(n-1)(2(n-1)-r)^2}{2(1+k)}$.
(iii) $DSH_k(G) = 0$.

Proof. Since for each vertex u of a graph G and $\sigma(u) = (2n - 2 - d_G(u))$, we have

$$SSH_k(G) = \sum_{\{u,v\} \subseteq V(G)} \frac{\left[\sigma(u) + \sigma(v)\right]}{d(u,v) + k}.$$
$$= \sum_{\{u,v\} \subseteq V(G)} \frac{(2n - 2 - d_G(u)) + (2n - 2 - d_G(v))}{1 + k}$$

By simplification, we have

$$SSH_k(G) = \frac{n(n-1)[2(n-1)-r]}{1+k}.$$

Similarly, we have to (ii) and (iii).

Proposition 2.2. For any Complet graph K_n with $n \ge 2$,

(i)
$$SSH_k(K_n) = \frac{n(n-1)^2}{1+k}$$
.
(ii) $PSH_k(K_n) = \frac{n(n-1)^3}{2(1+k)}$.
(iii) $DSH_k(K_n) = 0$.

Proposition 2.3. For any Cycle C_n with $n \ge 3$,

(i)
$$SSH_k(C_n) = \begin{cases} \frac{n^3}{2(1+k)}, & \text{if } n \text{ is even} \\ \frac{n(n^2-1)}{2(1+k)}, & \text{if } n \text{ is odd} \end{cases}$$

(ii) $PSH_k(C_n) = \begin{cases} \frac{n^5}{16(1+k)}, & \text{if } n \text{ is even} \\ \frac{n(n^2-1)^2}{16(1+k)}, & \text{if } n \text{ is odd} \end{cases}$
(iii) $DSH_k(C_n) = 0.$

Proposition 2.4. For any Complete regular bipartite graph $K_{s,s}$ with $s \ge 1$,

(i)
$$SSH_k(K_{s,s}) = \frac{2s(6s^2 - 7s + 2)]}{1+k}$$
.
(ii) $PSH_k(K_{s,s}) = \frac{2s(18s^3 - 33s^2 + 20s - 4)}{1+k}$.
(iii) $DSH_k(K_{s,s}) = 0$.

3. BOUNDS ON STATUS HARARY BASED INDICES

Theorem 3.1. Let G be a non-trivial connected graph with diameter D. Then

(i)
$$\frac{n(n-1)[2(n-1)-\delta]}{(n-1)+k} \le SSH_k(G) \le \frac{n(n-1)\Delta[D(2n-3)+1]}{1+k}$$

(ii)
$$\frac{n(n-1)(2(n-1)-\delta)^2}{2((n-1)+k)} \le PSH_k(G) \le \frac{n(n-1)[D(n-1)+\Delta(D-1)]^2}{2(1+k)}.$$

(iii)
$$\frac{|d_G(u)-d_G(v)|}{(n-1)+k} \le DSH_k(G) \le \frac{(D-1)|d_G(u)-d_G(v)|}{1+k}.$$

Equality holds if and only if $D \leq 2$.

Proof. Let G be a non-trivial connected graph with $D \leq 2$. Then for any vertex $u \in V(G)$, there are $d_G(u)$ vertices which are at distance 1 from u and the remaining $(n - 1 - d_G(u))$ vertices are at distance at most D.

Therfore,

$$d_G(u) + 2(n - 1 - d_G(u)) \le \sigma(u) \le d_G(u) + D(n - 1 - d_G(u)).$$

This implies that

(3.1)
$$2(n-1) - d_G(u) \le \sigma(u) \le D(n-1) - (D-1)d_G(u)).$$

Similarly, for any vertex $v \in V(G)$, we have

(3.2)
$$2(n-1) - d_G(v) \le \sigma(v) \le D(n-1) - (D-1)d_G(v)).$$

Adding Equation (3.1) and (3.2), we have

$$(3.3) \quad 4(n-1) - [d_G(u) + d_G(v)] \le \sigma(u) + \sigma(v) \le 2D(n-1) - (D-1)[d_G(u) + d_G(v)].$$

Since, $1 \le d(u, v) \le D$ and

(3.4)
$$\frac{1}{D+k} \le \frac{1}{d(u,v)+k} \le \frac{1}{1+k}.$$

By equation (3.3) and (3.4), we have

$$\frac{4(n-1) - \left[d_G(u) + d_G(v)\right]}{D+k} \le \frac{\sigma(u) + \sigma(v)}{d(u,v) + k}$$
$$\le \frac{2D(n-1) - (D-1)\left[d_G(u) + d_G(v)\right]}{1+k}.$$

The above inequality, which satisfies for each $\{u, v\} \subseteq V(G)$ left and right side of the inequalities, we have

(3.5)
$$\sum_{\{u,v\}\subseteq V(G)} \frac{4(n-1) - \left[d_G(u) + d_G(v)\right]}{D+k} \leq SSH_k(G) \leq \sum_{\{u,v\}\subseteq V(G)} \frac{2D(n-1) - (D-1)\left[d_G(u) + d_G(v)\right]}{1+k}.$$

Since $\delta \leq \{d_G(u), d_G(v)\} \leq \Delta$ implies $2\delta \leq \{d_G(u) + d_G(v)\} \leq 2\Delta$, and $1 \leq d(u, v) \leq (n-1)$ implies

$$\frac{1}{(n-1)+k} \le \frac{1}{d(u,v)+k} \le \frac{1}{1+k}$$

Hence equation (3.5) becomes the desired result (i).

By equation (3.5) and the definition of $M_1(G)$, we have

Corollary 3.1. Let G be a non-trivial connected graph with diameter D. Then

(i)
$$\frac{2n(n-1)^2 - M_1(G)}{(n-1) + k} \le SSH_k(G) \le \frac{Dn(n-1)^2 - (D-1)M_1(G)}{1+k}$$

(ii)
$$\frac{2n(n-1)^3 - 2(n-1)M_1(G) + M_2(G)}{(n-1) + k} \le PSH_k(G)$$

$$\frac{(n-1)+k}{2(n-1)^3D^2-2D(D-1)(n-1)M_1(G)+2(D-1)^2M_2(G)}{2(1+k)}$$

(iii)
$$\frac{irr(G)}{(n-1)+k} \le DSH_k \le \frac{(D-1)irr(G)}{1+k}$$

Equality holds if and only if $D \leq 2$.

By equation (3.5) with $d_G(u) = d_G(v) = r$, if G is a connected graph, then we have

Corollary 3.2. Let G be a r-regular graph with diameter D. Then

(i)
$$\frac{n(n-1)[2(n-1)-r]}{(n-1)+k} \leq SSH_k(G) \leq \frac{nr(n-1)[D(2n-3)+1]}{1+k}.$$

(ii)
$$\frac{n(n-1)(2(n-1)-r^2)}{2((n-1)+k)} \leq PSH_k(G) \leq \frac{n(n-1)[D(n-1)+r(D-1)]^2}{2(1+k)}.$$

(iii)
$$\frac{irr(G)}{(n-1)+k} \leq DSH_k \leq \frac{(D-1)irr(G)}{1+k}.$$

Equality holds if and only if $D \leq 2$.

By equation (3.5) with $rad(G) \le d(u, v) \le 2rad(G)$, we have

Corollary 3.3. Let G be a non-trivial connected graph with diameter D. Then

$$\begin{array}{ll} \text{(i)} & \frac{n(n-1)[2(n-1)-\delta]}{2rad(G)+k} \leq SSH_k(G) \leq \frac{n(n-1)\Delta[D(2n-3)+1]}{rad(G)+k} \\ \text{(ii)} & \frac{n(n-1)(2(n-1)-\delta)^2}{2(2rad(G)+k)} \leq PSH_k(G) \leq \\ & \frac{n(n-1)[D^2(n-1)^2 - 2\Delta D(D-1)(n-1) + \Delta^2(D-1)^2]}{2(rad(G)+k)} \\ \text{(iii)} & \frac{irr(G)}{2rad(G)+k} \leq DSH_k \leq \frac{(D-1)irr(G)}{rag(G)+k}. \end{array}$$

Equality holds if and only if $D \leq 2$.

4. BOUNDS IN TERMS OF OTHER GRAPHICAL INDICES

To prove next couple of bounds, we make use of the following lemma.

Lemma 4.1. [3] Let G be a non-trivial connected graph. Then

(i) $1 \le d(u, v) \le (n - 1)$. (ii) $1 \le d(u, v) \le diam(G)$. (iii) $rad(G) \le d(u, v) \le 2rad(G)$.

Theorem 4.2. Let G be a non-trivial connected graph. Then

(i) $\frac{S_1(G)}{RH_k(G)} \leq SSH_k(G) \leq S_1(G).H_k(G).$ (ii) $\frac{S_2(G)}{RH_k(G)} \leq PSH_k(G) \leq S_2(G).H_k(G).$

$$\begin{array}{l} \text{(ii)} \quad RH_k(G) \leq I \text{ SH}_k(G) \leq S_2(G) \text{.} H_k(G) \text{.}\\ \text{irr}(G)(G) \quad \text{irr}(G)(G) \leq DSH_k(G) \leq irr(G) H_k(G) \text{.} \end{array}$$

(iii)
$$\frac{H(G)(G)}{RH_k(G)} \le DSH_k(G) \le irr(G).H_k(G)$$

Where $RH_k(G)$ denotes the reciprocal of generalized Harary index of a graph G.

Proof. By Cauchy-Scharz inequality, we have

$$\sum_{\{u,v\}\subseteq V(G)} \frac{\sigma(u) + \sigma(v)}{d(u,v) + k} \ge \frac{\sum_{\{u,v\}\subseteq V(G)} \sigma(u) + \sigma(v)}{\sum_{\{u,v\}\subseteq V(G)} d(u,v) + k}$$
$$SSH_k(G) \ge \frac{S_1(G)}{RH_k(G)}.$$

Similarly, we have

$$\sum_{\{u,v\}\subseteq V(G)} \frac{\sigma(u) + \sigma(v)}{d(u,v) + k} \le \sum_{\{u,v\}\subseteq V(G)} [\sigma(u) + \sigma(v)] \sum_{\{u,v\}\subseteq V(G)} \frac{1}{d(u,v) + k}.$$

Therefore,

$$\frac{S_1(G)}{RH_k(G)} \le SSH_k(G) \le S_1(G).H_k(G).$$

Similarly, we have (ii) and (iii).

Theorem 4.3. Let G be a non-trivial connected graph with $D \leq 2$. Then

(i) $SSH_k(G) \leq [2n(n-1)^2 - M_1(G)]H_k(G).$ (ii) $PSH_k(G) \leq [2n(n-1)^3 - 2(n-1)M_1(G) + M_2(G)]H_k(G).$ (iii) $DSH_k(G) \leq irr(G) H_k(G).$

Proof. Let G be a (n,m) - connected graph with diameter $D \leq 2$. Then the $d_G(u)$ vertices at distance 1 from the vertex u and remaining $(n - 1 - d_G(u))$ vertices at distance 2 from u in G. Thus for each vertex u in G, we have

$$\sigma(u) = d_G(u) + 2(n - 1 - d_G(u)) = 2n - 2 - d_G(u).$$

(i) Consider

$$SSH_{k}(G) = \sum_{\{u,v\} \subseteq V(G)} \frac{\left[\sigma(u) + \sigma(v)\right]}{d(u,v) + k}.$$

$$\leq \sum_{\{u,v\} \subseteq V(G)} \left[\sigma(u) + \sigma(v)\right] \sum_{\{u,v\} \subseteq V(G)} \frac{1}{d(u,v) + k}$$

$$\leq \sum_{\{u,v\} \subseteq V(G)} \left[2n - 2 - d_{G}(u) + (2n - 2 - d_{G}(v))\right] H_{k}(G)$$

$$\leq \sum_{\{u,v\} \subseteq V(G)} \left[(4n - 4) - \left[d_{G}(u) + d_{G}(v)\right]\right] H_{k}(G)$$

$$\leq \left[2n(n - 1)^{2} - M_{1}(G)\right] H_{k}(G).$$

(ii) Consider

$$\begin{split} PSH_k(G) &= \sum_{\{u,v\} \subseteq V(G)} \frac{\sigma(u) \ \sigma(v)}{d(u,v) + k} \\ &\leq \sum_{\{u,v\} \subseteq V(G)} [\sigma(u).\sigma(v)] \sum_{\{u,v\} \subseteq V(G)} \frac{1}{d(u,v) + k} \\ &\leq \sum_{\{u,v\} \subseteq V(G)} (2n - 2 - d_G(u))(2n - 2 - d_G(v))H_k(G) \\ &\leq \sum_{\{u,v\} \subseteq V(G)} \left[4n^2 - 8n + 4 - 2n \left[d_G(u) + d_G(v) \right] + 2 \left[d_G(u) + d_G(v) \right] \\ &+ (d_G(u) + d_G(v)) \right] H_k(G) \\ &\leq \left[2n(n-1)^3 - 2(n-1)M_1(G) + M_2(G) \right] H_k(G). \end{split}$$

(iii) Consider

$$DSH_{k}(G) = \sum_{\{u,v\}\subseteq V(G)} \frac{|\sigma(u) - \sigma(v)|}{d(u,v) + k}.$$

$$\leq \sum_{\{u,v\}\subseteq V(G)} |\sigma(u) - \sigma(v)| \sum_{u,v\subseteq V(G)} \frac{1}{d(u,v) + k}$$

$$\leq \sum_{\{u,v\}\subseteq V(G)} |2n - 2 - d_{G}(u) - [2n - 2 - d_{G}(v)]|H_{k}(G)$$

$$\leq \sum_{\{u,v\}\subseteq V(G)} |d_{G}(u) - d_{G}(v)| H_{k}(G)$$

$$DSH_{k}(G) \leq irr(G) H_{k}(G).$$

Thus the result follows.

To prove our next result, we make use of the following Cauch-Schwarz inequality.

Lemma 4.4. Let $a_1, a_2, ..., a_n$ and $b_1, b_2, ..., b_n > 0$ be two sequence of real numbers. Then

$$\sum_{i=1}^{n} \frac{a_i^2}{b_i} \ge \frac{\left(\sum_{i=1}^{n} a_i\right)^2}{\sum_{i=1}^{n} b_i}$$

Theorem 4.5. Let G be a non-trivial connected graph. Then

(i)
$$SSH_k(G) \ge \frac{S_1^2(G)}{RH_k(G)}$$
.
(ii) $PSH_k(G) \ge \frac{S_2^2(G)}{RH_k(G)}$.
(iii) $DSH_k(G) \ge \frac{irr^2(G)}{RH_k(G)}$.

Proof. (i) Let G be a non-trivial connected graph. By Lemma 4.4, we have $a_i = \sigma(u_i) + \sigma(v_i)$ and $b_i = \frac{1}{d(u_i, v_i) + k}$ for all $1 \le i \le n$. Then

$$\sum_{i=1}^{n} \frac{\left(\sigma(u_i) + \sigma(v_i)\right)^2}{d(u_i, v_i) + k} \ge \frac{\left(\sum_{i=1}^{n} \sigma(u_i) + \sigma(v_i)\right)^2}{\sum_{i=1}^{n} \frac{1}{d(u_i, v_i) + k}}$$

Therefore, $SSH_k(G) \ge \frac{S_1^2(G)}{RH_k(G)}$. Similarly, we have the results (ii) and (iii).

5. Comparative analysis of Molecular graphs

For chemical applicability of generating elementary reactions of complex systems of Paraffinic hydrocarbons. This group of hydrocarbons consisting of linear molecules with the formula $C_k H_{2k+2}$. The following molecular graph of paraffin hydrocarbons as shown in Figure 1, which is used for producing petrochemicals range from the simplest hydrocarbon methane, to heavier hydrocarbon gases and liquid mixtures present in crude oil fractions and residues. For more details on molecular graphs and its related concepts, we refer to [15, 25, 26].

n - dedocane

FIGURE 1. Paraffin Hydrocorbons

Molecular graphs	SSH_k			PSH_k			DSH_k		
	k=0	k=1	k=2	k=0	k=1	k=2	k=0	k=1	k=2
3-methylpentane	360.3	215.7	157.1	1748.8	1058.9	775.1	52	32.6	23.4
2,2-dimethylbutane	340	203	147	1500	912	666	52	29	20.3
2,3-dimethylbutane	344	205.333	148.999	1557.331	943.666	689	50.666	28.666	20.266
2,2-dimethylpentane	610	368.733	270.866	3819	2358.4	1748.366	86	50.8	36.8
3,3-dimethylpentane	589.333	359.8	264.799	3507.333	2175.733	1608.599	90.666	53	38.133
n-octane	1117.066	692.437	516.967	11358.132	7063.866	5288.373	128	82.894	62.98
3-methylheptane	1043.932	648.484	483.184	9523.866	5960.818	4461.96	140.199	89.037	66.839
3-ethylhexane	617	377.8	278.6	4012.5	2488.8	1848	92	55	40
2,2-diethylhexane	933.466	564.666	413.514	8596.333	5377.366	4011.105	129.2	79.8	59.147
2,4-dimethylhexane	912.933	587.666	443.370	7937	5181	3929.799	127.1	82.799	62.542
2-methyl,3-ethylpentane	957	596.133	443	7612.5	4807.133	3598	145.333	87.533	63.932
2,2,4-trimethylpentane	964.666	597.866	442.666	7612	4780.666	356.733	124.666	74.8	54.533
n-dodecane	5565.478	3033.679	2331.968	108725.782	70651.18	54357.934	500	354.115	283.295

TABLE 2. Graphical indices of paraffin hydrocarbons

sum status Harary index

FIGURE 2. Sum status Harary index of Molecular graphs

FIGURE 3. Product status Harary index of Molecular graphs

FIGURE 4. Difference status Harary index of Molecular graphs

The graphical representation shows the comparative analysis of generalized status Harary indices such as sum status Harary index, product status Harary index and difference status Harary index as shown in Figures 2, 3, and 4. From this graphical representation, we concluded that the product status Harary index gives the highest values compared to the sum and difference status Harary index. When $0 \le k \le 2$ in this condition, the molecular graph of *n*-dodecane values varies from 108.7K to 54.3K. Otherwise, the remaining molecular graphs are changing their values vary in consistency as shown in Figure 3 and 4. We can represent mathematically as $DSH_k(G) < SSH_k(G) < PSH_k(G)$.

6. CONCLUSION AND OPEN PROBLEMS

In this paper, we calculated the exact values for some specific families of graphs and many bounds of the generalized status Harary based indices are obtained. And also, we shows the relationship between the Harary based indices and molecular graph of paraffin hydrocorbons. For the comparative advantages, applications, and mathematical point of view, many questions are suggested by this research, among them are the following.

- 1. Find the extremal values and extremal graphs of the generalized status Harary based indices.
- 2. Characterize among the graphical indices of $DSH_k(G)$, $SSH_k(G)$ and $PSH_k(G)$ for appropriate value of k.
- 3. Find QSPR/QSAR/QSTR related study on the generalized status Harary based indices.

7. DECLARATIONS

Conflict of Interest: The authors declare that there is no conflict of interest regarding the publication of this article.

Acknowledgements: Authors would like to thank the reviewers for their valuable comments and suggestions to improve the quality of the paper.

Author Contributions: All authors have contributed equally to this manuscript.

References

- C. Adiga, R. Malpashree, The degree status connectivity index of graphs and its multiplicative version, South Asian J. of Math, Vol. 6(6) pp 288-299, 2016.
- [2] M. O. Albertson, The irregularity of a graph, Ars Comb., Vol. 46 pp 219–225, 1997.
- [3] S. Ameer Basha, T. V. Asha, B. Chaluvaraju, Generalized Schultz and Gutman Indices, Iranian Journal of Mathematical Chemistry, Vol. 13(4) pp 301-316, 2022.
- [4] B. Chaluvaraju, H. S. Boregowda, I. N. Cangul, Generalized Harary Index of certain classes of graphs, Far East Journal of Applied Mathematics, Vol. 116(1) pp 1-33, 2023.
- [5] R. C. Entringer, D. E. Jackson, D. A. Snyder, Distance in graphs, *Czechoslovak Mathematical Journal*, Vol. 26(2) pp 283-296, 1976.
- [6] I. Gutman, N. Trinajstic, Graph theory and molecular orbitals. Total φ-electron energy of alternant hydrocarbons, *Chemical physics letters*, Vol. 7(4) pp 535-538, 1972.
- [7] F. Harary, Status and contrastatus, Sociometry, Vol. 22(1) pp 23-43, 1959.
- [8] F. Harary, Graph Theory, CRC Press, 1969.

- [9] V. R. Kulli, Computation of Status indices of graphs, International Journal of Mathematics trends and Technology, Vol. 65(12) pp 54-61, 2019.
- [10] V. R. Kulli, Some new status indices of graphs, International Journal of Mathematics Trends and Technolgy, Vol. 65(10) pp 70-76, 2019.
- [11] V. R. Kulli, Computation of ABC, AG and augmented status indices of graphs, International Journal of Mathematical Trends and Technology, Vol. 66(1) pp 1-7, 2020.
- [12] V. R. Kulli, Status Gourava indices of graphs, International Journal of Recent Scientific Research, Vol. 11(1) pp 36770-36773, 2020.
- [13] V. R. Kulli, The (a, b)-status neighborhood Dakshayani index, International Journal of Mathematics Trends and Technology, Vol. 67(1) pp 79-87, 2021.
- [14] V. R. Kulli, Status Sombor indices, International Journal of Mathematics and Computer Research, Vol. 10(6) pp 2726-2730, 2022.
- [15] V. R. Kulli, N. Harish, B. Chaluvaraju, Sombor leap indices of some chemical drugs, RESEARCH REVIEW International Journal of Multidisciplinary, Vol. 7(10) pp 158-166, 2022.
- [16] K. Narayankar, D. Selvan, Geometric Arthmetic Status index of graphs, International Journal of Mathematical Archive, Vol. 8(7) pp 230-233, 2017.
- [17] K. Pattabiraman, A. Santhakumar, Second Status Connectivity Indices and its Coindices of Composite Graphs, International Journal of Mathematical Combinatorics, Vol. 2 pp 104-13, 2019.
- [18] K. Pattabiraman, A. Santhakumar Bounds on hyper-status connectivity index of graphs, TWMS J. App. and Eng. Math., Vol. 11 pp 216-227, 2021.
- [19] H. S. Ramane, A. S. Yalnaik, Bounds for the status connectivity index of Line graphs, International Journal of Computational and Applied Mathematics, Vol. 12(3) pp 305-310, 2017.
- [20] H. S. Ramane, S. Ashwini, Status connectivity indices of graphs and its applications to the boiling point of benzenoid hydrocarbons, *Journal of Applied Mathematics and Computing*, Vol. 55 pp 609-627, 2017.
- [21] H. S. Ramane, A. S. Yalnaik, R. Sharafdini, Status connectivity indices and co-indices of graphs and its computation to some distance-balanced graphs, AKCE International Journal of Graphs and Combinatorics, pp 1–11, 2018.
- [22] H. S. Ramane, B. Basavanagoud, A. S. Yalnaikc, Harmonic status index of graphs, Bulletin of Mathematical Sciences and Applications, Vol. 17 pp 24-32, 2016.
- [23] D. S. Revankar, S. H. Priyanka, S. P. Hande, On atom-bond connectivity status index of graphs, Advances in Mathematics: Scientific Journal, Vol. 10(3) pp 1197-1213, 2021.
- [24] R. J. Sudhir, S. L. Patil, On Status Indices of Some Graphs, International J.Math. Combin., Vol. 3 pp 99-107, 2018.
- [25] R. Todeschini, V. Consonni, Molecular descriptors, Recent Advances in QSAR Studies, pp 29-102, 2010.
- [26] H. Wiener, Structural determination of paraffin boiling points, Journal of the American chemical society, Vol. 69(1) pp 17-20, 1947.
- [27] D. B. West, Introduction to graph theory, Prentice Hall, Vol. 2, 2001.