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1. Introduction

Hurricanes, floods, earthquakes, industrial catastrophes, nuclear mishaps, terrorist at-

tacks, and other disastrous situations endanger people’s lives. Evacuation under these situ-

ations is one method of increasing safety and preventing damage from escalating. Over the

previous two decades, there has been a greater focus on evacuation issues. The approaches

can be generally classified as optimization or simulation methods (see Kotsireas et al. [1]).

In either scenario, the evacuation problem is addressed by a network flow model in which

arcs or edges serve as roadways connecting two locations or network nodes. The dangerous

zones represent source nodes, while the safe sites where evacuees should be relocated are

called sink nodes. Every arc has a certain capacity. Furthermore, each edge is assigned a

travel time or a cost. The transshipment of evacuees or vehicles or commodities via the

lanes of the network is modeled as flow.

We are deeply saddened by the untimely demise of Prof. Dr. Urmila Pyakurel, who departed from us

at the young age of 42 on April 12, 2023. She was a vibrant and inspirational young professor, a beacon

of excellence for Nepalese women in the field of mathematics. Her loss is a significant and heartbreaking

setback for the scientific community.
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One of the most critical aspects of disaster preparation is evacuating individuals from

dangerous regions to safe areas. Network flow approaches are the most efficient among the

several disciplines of mathematical studies, such as fluid mechanics, differential equations,

control theory, traffic simulations, and variational inequalities in evacuation planning. An

optimizer manages an evacuation network plan to ensure that the maximum number of

evacuees are transferred from risky zones (sources) to safer places (sinks) as rapidly as

possible. Selecting the most secure venues and providing humanitarian logistics are difficult

in these situations. The survey studies of Lovetskii and Melamed [2], Aronson [3], Hamacher

and Tjandra [4], Cova and Johnson [5], Kotnyek [6], Yusoff et al. [7], Skutella [8], and

Dhamala et al. [9] provide a detailed discussion of many theories and applications. The

main concern of this study is to examine contraflow transportation plannings that has

applications not only in emergency evacuations but also during peak traffic hours in a

metropolitan city.

Ford and Fulkerson [10, 11] introduced a dynamic flow problem by including the time

component in the conventional network flow problem. Gale [12] wonders if it is feasible to

transship the maximum amount of flow from a source to a sink at each time point. He

introduces a more general problem, known as earliest arrival flow problem, in which flow

is maximized at each time point. However, he is unable to provide a method to address

this problem. The strategies to tackle this problem in a two-terminal network were devised

by Wilkinson [13] and Minieka [14]. The earliest arrival flow problem does not exist in a

multi-source and multi-sink network. However, for a multi-source single-sink network with

known supply and demands, it always exists, Baumann and Skutella [15]. In an emergency,

it may be important to provide priority to specific terminals. The lexicographic maximum

flow occurs when the flow from the origin node(s) to the destination node(s) is maximized

with a certain priority on terminals. The multi-source multi-sink network’s lexicographic

maximum static flow problem is solved in a polynomial-time [14]. Hoppe and Tardos [16]

and Hoppe [17] provide a dynamic variant of this problem with specified priority ordering

on terminals. They also provide a polynomial-time solution for this problem, which is useful

in some evacuation planning situations.

Using natural transformation, Fleischer and Tardos [18] extended discrete dynamic

flow solutions to a continuous-time environment with the same time complexity. The first

exponential-time augmenting path methods for a single-source single-sink generalized static

maximum flow problem were proposed by Jewell [19] and Onaga [20, 21]. The authors in [22]

created the first polynomial-time combinatorial approach for the problem. A maximum

generalized dynamic flow model in which each arc comprises both gain factors and travel

times, was presented by Gross and Skutella [23] and Gross [24]. They presented a pseudo-

polynomial time algorithm to the problem on a two-terminal lossy network for a single

commodity, where the loss rate per time unit is the same on all arcs. The issue of generalized

dynamic flow is NP-hard in general.

The best lane reversal approach makes traffic more organized and smooth by alleviating

traffic congestion caused by natural and human-induced large-scale disasters, busy office

hours, special events, and public demonstrations. Using various operations research models,
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heuristics, optimization algorithms, and simulation, contraflow reconfiguration reverts the

usual orientation of unoccupied lanes towards sinks, fulfills the given constraints, increasing

the value of the flow and decreasing the average duration of evacuation.

The goal is to provide a survey that categorizes the approaches available in the litera-

ture. Based on the methodologies utilized in the evacuation models, a first categorization

are formed, namely optimization-based or simulation-based approaches. Furthermore, a

subclassification are created based on the model’s consideration of key critical properties.

These are elements that will have a substantial influence on evacuation efficiency. The

solution approaches for each model in these categories are examined in-depth and evalu-

ated based on their computing performance and realizability. In the event of unanticipated

circumstances, the computational efficiency of the model is critical. The models run as ef-

ficiently as possible to establish alternate strategies and prepare for the dynamic scenarios.

The remainder of the paper is summarized below. All network flow theory param-

eters and flow models are described in Section 2. Section 3.1 reviews the literature on

single-commodity contraflow problems with symmetric and asymmetric transmission times

on anti-parallel arcs. Different solution strategies for contraflow problems such as heuristics,

simulation and analytical are discussed in Sub-sections 3.2 and 3.3, respectively, whereas the

NP-hardness of the problem is presented in Sub-section 3.4. Sub-section 3.5 discusses max-

imum contraflow problem with intermediate storage. Section 4 surveys multi-commodity

contraflow problems with solution strategies, and Section 5 concludes the paper.

2. Preliminaries

To keep this article self-contained, we provide some fundamental notations and defini-

tions alongside the flow models in this section.

2.1. Auxiliary Network. For a network Q, the corresponding auxiliary network is de-

noted by Qa = (N,Ea,K, ba, τa, di, S+, S−, T ), with undirected edges in Ea = {(x, y) :

(x, y) or (y, x) ∈ E}, where er = (y, x) is the backward edge of e = (x, y).

Capacity. The capacity of the auxiliary lane is given by

ba =


be if er /∈ E
ber if e /∈ E
be + ber otherwise.

(2.1)

Transit times. On networkQ, the arcs are associated with a non-negative travel time taken

by flow (commodities) to travel through an arc from the initial point to the final point. The

transit time may be constant or it may be flow-dependent. We consider constant travel

times throughout this work.

(i)Symmetric. Arulselvan [25] and Rebennack et al. [26] considered symmetric travel times

on anti-parallel arcs. The travel time of the auxiliary arc is

τa =

{
τe if e ∈ E
τer otherwise.

(2.2)
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(ii)Non-symmetric. To model, the scenario of uneven road network topology, authors

in [27, 28, 29, 30, 31, 32, 33, 34] consider the non-symmetric transit times on anti-parallel

arcs and modify the idea of Rebennack et al. [26] (cf.Figure 1). The travel time of the

auxiliary arc is

τa =


τe if er is oriented towards e

τer if e is oriented towards er

τe = τer for one way arc e or er.

(2.3)

τe

τer

(i)

τe

τe

(ii)

τ re

τer

(iii)

Figure 1. (i) Represents a two-way lane, (ii) represents the network, if lane

er is reverted towards lane e, and (iii) represents the network, if lane e is

reverted towards lane er.

2.2. Flow models and notations. Consider the network Q = (N,E,K, b, τ, S+, S−, T ),

where N represents sets of vertices, E is the set of edges (arcs), and K = {1, 2, . . . , k}
be the set of commodities with |N | = n and |E| = m. Each commodity i ∈ K is routed

through a unique source-sink pair (si, ti). The sets S+ and S− ⊂ V denote origin nodes

and destination nodes of all commodities, respectively. On each arc e = (x, y), the capacity

function b : E → R≥0 limits the flow of commodities, and a non-negative travel time function

τ : E → R≥0 measures the time to transship the flow from the initial point x to the terminal

point y of edge e. The sets δoutv = {e = (v, w) : ∀w ∈ N} and δinv = {e = (w, v) : ∀w ∈ N}
designate the sets of edges leaving from vertex v and entering to vertex v, respectively.

The sets T = {0, 1, 2, . . . , T} and T = [0, T + 1) denote the time frame in discrete and

continuous-time settings. A network Q = (N,E,K, b, S+, S−) without time component is a

static network.

Generalized dynamic multi-commodity flow. For continuous-time GDMCF ξc is a

sum of flows described by a Lebesque measurable functions ξic : E × T→ R+ satisfying the

constraints (2.4 - 2.6).

∑
e∈δin(v)

∫ T−τe

0
λeξ

i
c(e, ρ)dρ−

∑
e∈δout(v)

∫ T

0
ξic(e, ρ)dρ = 0, v /∈ {S+, S−}, ∀i ∈ K,(2.4)

∑
e∈δin(v)

∫ θ−τe

0
λeξ

i
c(e, ρ)dρ−

∑
e∈δout(v)

∫ θ

0
ξic(e, ρ)dρ ≥ 0, ∀ θ ∈ T, v 6= S+,∀i ∈ K,(2.5)

0 ≤
k∑
i=1

ξic(e, θ) ≤ be + ber , ∀ e ∈ E, θ ∈ T.(2.6)

The MDMCF problem is to maximize the multi-commodity flow over time in (2.7)
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max
∑
i∈K

∑
e∈δin(ti)

∫ T−τe

0
λeξ

i(e, ρ)dρ.(2.7)

In this case, the constraints in (2.4) represent flow conservation constraints at the

intermediate vertex in time T . The inequality in (2.5) indicates moderate flow conservation

restrictions that enable the flow to be stored at intermediate vertices, while the equality

in (2.5) depicts flow conservation at intermediate vertices at all times with no storage.

Furthermore, constraints in (2.6) represent capacity constraints on the arcs.

The mathematical formulation (2.4-2.7) is reduced to single-commodity maximum gen-

eralized dynamic flow model if i = 1, ∀i ∈ K and S+ = {s}, S− = {t}. If we replace the

integral sign by summation and remove dρ in constraints (2.4, 2.5, and 2.7) it reduces to

discrete-time maximum generalized dynamic flow, whereas if λe = 1, ∀e ∈ E then it reduces

to maximum dynamic flow. The maximum static flow model has an analogous formulation

by reducing temporal dimension from the above constraints and objective function.

2.3. Flow model with intermediate storage. In a network, the outflow from a source

does not have to be the same as the inflow into a sink. In flow models with intermediate

storage, the inflow into intermediate vertices can be higher than the outflow, and the extra

flow can be kept in that vertex as long as the node capacity is not exceeded. From this

standpoint, authors in [35] suggest a change to the present maximum flow models. One

goal is to employ maximal arc capacity to push as much flow out of the source as feasible.

The newly suggested model can be employed only if the total capacity of arcs leaving

the source exceeds the network’s minimum cut capacity. In this model, I denotes the

set of intermediate nodes and u : V → R≥0 represents node capacity. The mathematical

formulation in a discrete time setting is given as follows:

∑
e∈δin(v)

θ−τe∑
ρ=0

ξi(e, ρ)−
∑

e∈δout(v)

θ∑
ρ=0

ξi(e, ρ) ≥ 0, ∀ θ ∈ T, v 6= S+,(2.8)

0 ≤
k∑
i=1

ξi(e, θ) ≤ be + ber , ∀ e ∈ E, θ ∈ T,(2.9)

0 ≤
k∑
i=1

ξiv(θ) ≤ uv, ∀ v ∈ I, θ ∈ T.(2.10)

The MDMCF problem with intermediate storage is to maximize the multi-commodity

flow over time with intermediate storage
∑
|ξi| in (2.11) (for details see in [36]).

max
∑
i∈K

∑
e∈δout(S+)

T∑
ρ=0

ξi(e, ρ) = max
∑
i∈K

 ∑
e∈δin(S−)

T−τe∑
ρ=0

ξi(e, ρ) +
∑

v∈I:uv≥0

ξiv(T )

 .(2.11)

If i = 1, ∀i ∈ K and S+ = {s}, S− = {t}, this model reduces to single-commodity

maximum dynamic flow model with intermediate storage.
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3. Solution Approaches

3.1. Contraflow reconfiguration. People are discouraged from going to risky regions

from safer locations in an emergency. As a consequence, the roads leading to the safe zones

grow overcrowded, while those leading to the danger areas become unoccupied. In such

instances, turning a two-way lane to a one-way in the proper direction becomes desirable to

increase traffic flow and decrease evacuation time. This is called contraflow configuration,

and it involves reversing the direction of traffic on unoccupied road segments towards de-

mand points to improve the capacity of the road sections. Contraflow arrangement boosts

flow value while reducing road congestion and smoothing vehicle flow. However, determin-

ing the best orientations for a network’s arcs to optimize flow is a challenging optimization

problem. The average evacuation time will be shortened, and certain routes with surplus

capacity will be freed up for the use of emergency vehicles and logistical assistance to get to

the sources. The contraflow arrangement may be dealt with using a variety of operational

research models, heuristics, optimization, and simulation approaches.

Example 3.1. Consider the network Q = (N,E, b, τ, s, t, T ), as given in the Figure 2(i)

with asymmetric capacity and symmetric (or asymmetric) travel times on edges. For a time

frame of 6 units, before contraflow (CF), a maximum of 20 units of flow is transshipped from

the origin to the destination, and a maximum of 24 units of flow is sent after contraflow

with symmetric transit times, whereas 28 units of flow are sent with asymmetric transit

times (cf. Figure 2(ii),(iii), Figure 3(i),(ii), and Table 1).

Table 1. Maximum flow before and after CF with STT and ATT taking T=5.

paths time without CF TF CF (STT) TF CF (ATT) TF

s− y − t 3 4 12 4 12 4 12

s− x− y − t 4 (3) 2 4 4 8 4 12

s− x− t 4 2 4 2 4 2 4

Total flow 20 24 28

TF = Total Flow, STT = Symmetric Transit Times, ATT = Asymmetric Transit Times

However, if we flip the orientation of arc (x, y) in the direction of the lane (y, x), transit

times in both the cases symmetric and asymmetric are the same, and the flow is 16 units

(cf. Figure 2(iv)), as shown in Table 2.

Table 2. Maximum Contraflow with STT and ATT

Paths Time CF with STT and ATT TF

s− y − t 3 4 12

s− y − x− t 7 - -

s− x− t 4 2 4

Total 16

T = 5, TF=Total Flow
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(iv) reduced flow value with (y, x) orientation.

t

Figure 2. (i) Given network (ii) network after contraflow with symmetric

transit times (iii) network after contraflow with asymmetric transit times

(iv) network after contraflow in the direction of (y, x).

s x y t

(i)

T = 0

T = 1

T = 2

T = 3

T = 4

T = 5

s x y t

(ii)

T = 0

T = 1

T = 2

T = 3

T = 4

T = 5

Figure 3. (i) Time-expanded network of Figure 2 (ii) and (ii) Time-

expanded network of Figure 2 (iii).



18 SHIVA P. GUPTA, URMILA PYAKUREL, TANKA N. DHAMALA

3.2. Heuristics and simulation. Contraflows, also known as lane reversals, are consid-

ered in simulation models, as they are in optimization models. Lane reversals have been

demonstrated to reduce overall evacuation time in recent trends and studies. The authors

of [37] conducted a study to investigate the impact of contraflow installations in the New

Orleans evacuation. The studies were carried out to illustrate the advantages of contraflow.

The effectiveness measurements, particularly travel duration and average speed, improved

significantly for the designs that allowed contraflow. In most circumstances, the contraflows

take complete lane reversals, which means that the whole capacity of the route is moved to

the destinations. There are a few reasons why one should keep a capacity either way. A

network link in each direction might be used to establish a route to the destination in the

case of a large network. The reversed links can no longer be utilized to reach the target if

a connection breaks and a different path is required.

There is existing literature on heuristic ways to lane reversal strategies and their appli-

cations. Authors from a variety of professions have documented considerable time savings

and the necessity for good contraflow strategies in many tragic events. Kim and Shekhar [38]

proposed a simulated annealing procedure for this problem together with emperical results.

Kim et al. [39] proved the NP-hardness of the contraflow issue by modeling it as an integer

programming problem. They proposed two strategies for possible numerical approximation

solutions to the quickest contraflow problem: greedy and bottleneck relief heuristics. To

obtain precise mathematical solutions for general contraflow strategies is expensive.

It has been demonstrated through computational research that reversing at most 30%

of arcs can save at least 40% of the evacuation time. Vogiatzis et al. [40] described a heuristic

approach to address the problem of transporting vehicles from dangerous vertices to safe

vertices, reverting at most a specific number of lanes to minimize the number of vehicles

that must spend time on the most dangerous vertices. To tackle a large-scale problem

effectively, they apply smart clustering of similar vertices to construct subgraphs.

Hamza-Lup et al. [41] constructed the first contraflow algorithms, known as all-links

and fastest-links, to assist an intelligent transportation evacuation system formed to create

dynamic evacuation plans focused on the accident site, scope, and current traffic circum-

stances, with the goal of providing a quick and reliable humanitarian relief.

The all-links algorithm reduces traffic congestion by traversing all possible streets just

once, beginning at the source. The faster-links method directs traffic to the shortest path-

ways between the source and exit locations, which are generated using an ideal multicast

tree. However, because these algorithms are unconcerned with the total capacity of the

road, they are ineffective if the number of evacuees, lane capacity, specific safe regions, or

evacuees are dispersed over many sites. Contraflow has been commonly used to evacuate

hurricane-prone areas in the southeastern United States for numerous years. Litman [42]

not only noted storm Katrina and Rita’s planning flaws but also condemned the unsched-

uled contraflow instructions and refusal to employ contraflow lanes. Wolshon [43] claims

that a considerable increase in flow and time was obtained instantly without the effort or

cost of planning, designing, and constructing new lanes.
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In order to establish an ideal contraflow scheme, many algorithms and simulation ap-

proaches have been utilized to analyze the consequences of various contraflow schemes. For

the calculation of traffic volume and journey time under various contraflow systems, soft-

ware packages such as CORSIM [44], DYNASMART [45], and DynusT [46], were created.

To find the optimal contraflow methods heuristic [47], genetic [48], greedy [39], and Tabu

search [49], algorithms have been utilized. Major advancements in the utilization of traffic

contraflow for mass evacuation have been accomplished through modeling and simulations

done with the assistance of such algorithms.

Wang et al. [50] proposed a multi-model evacuation issue in which the lane reversal

model and road segment repair are tackled at the same time. The result demonstrates that

by creating one new road and replanning the resource, the evacuation time on the damaged

transportation network was decreased by more than 50% and by 20%, respectively. Wang

et al. [51] examined a relaxed lane reversal model incorporating setup time for contraflow

operation, taking into account the priority ordering of evacuees’ flow. Furthermore, Lv et

al. [52] provided the root choice opportunity for evacuees in a contraflow network model

by disregarding background traffic and conducting complete contraflow reconfiguration.

It increases the efficiency of evacuation and reduces the evacuation time by 30 to 60%.

In execution, the Monticello, Minnesota area was evacuated by employing both the lane-

based contraflow and crossing-elimination tactics at the same time. According to Xie and

Turnquist [53], the experiment was done with a fixed number of terminals and a complete

lane reversal of the transportation network. Xie et al. [54] employed a bi-level model to

tackle the Monticello nuclear facility evacuation problem in the same location, including

contraflow at road segments and crossing removal at intersection. The lane-based network

optimization and simulation models are included in the bi-level approach. Hua et al. [55]

conducted a case study for a super typhoon on an evacuation network utilizing the integrated

contraflow technique.

The effects of shifting bottlenecks created by coaches were investigated using the con-

traflow technique in [56]. In a contraflow method, the empirical data was used to build a

Vissim simulation model to explore the influence of shifting bottlenecks caused by trucks.

The contraflow problem was defined by Bagloee et al. [57] as a bilevel, non-linear, and

discrete problem that had to be solved to solve a traffic assignment problem. Wollenstein-

Betech et al. [58] used a piecewise affine approximation of the travel latency function to

reformulate the lane reversal problem, allowing us to use integer linear programming’s total

uni-modularity. They relax the integer variables to convert an integer linear program to

a linear program. Their approach can solve the problem of any number of lane reversals.

Darvinshan and Lim [59] proposed a rerouting strategy for an evacuation network disrupted

by road closures. To make the model adaptable to large evacuation networks, they presented

a path-based dynamic flow optimization.

3.3. Analytical solutions. The development of analytical solution approaches for con-

traflow setups has recently sparked an interest. It does not have a rich history. The

contraflow strategies were implemented based on previous evacuation experiences, and the
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analytical results were insufficient. Arulselvan [25] and Rebennack et al. [26] presented an-

alytical models and solution strategies for the contraflow arrangement. They developed an

algorithm to solve the maximum static contraflow problem by using graph transformation.

To obtain the solution they use the maximum flow algorithm and established the following

theorem.

Theorem 3.2. [26] A single-source single-sink maximum static contraflow problem can be

solved optimally in a strongly polynomial-time.

Authors in [25, 26] introduced the maximum dynamic contraflow (MDCF) problem in

discrete-time parameters. They also presented a polynomial-time algorithm to solve the

problem in the s-t network that enabled arc reversal at time zero. This means that if we

chose to reverse an arc, it will remain reversed for the duration of the time period. The

capacities of two-way arcs are combined to provide new capacity, but the travel time remains

the same as it was before contraflow. The temporally repeated flow technique is used for

a polynomial-time solution. The resulting flow is decomposed into pathways and removes

cycles. If ψe > be, or if flow ψe ≥ 0 through lane e /∈ E, lane er ∈ E is reversed. The cost

of a contraflow setup is assumed to be zero. The general contraflow evacuation problem via

arc reversals, on the other hand, is NP-hard (Kim et al. [39], Rebennack et al. [26]).

Algorithm 1: [26] The MDCF Algorithm with Symmetric Travel Times

Input : A network Q = (N,E, b, τ, s, t, T ) with symmetric travel time on arcs

Output: A maximum dynamic contraflow on Q
(1) The network Q is transformed into Qa = (V,Ea, ba, τa, s, t, T ) as

ba = be + ber ,

τa :=

{
τe e ∈ E,
τer otherwise.

(2) To compute MDCF use a temporally repeated flow algorithm on Qa.
(3) Reverse er ∈ E up to the capacity ψe − be iff ψe > be, be replaced by 0 whenever

e /∈ E.

(4) For any e ∈ E, if er is reverted, sc(e
r) = ba − ψe and sc(e) = 0. If neither e nor er

is reverted, sc(e) = be − ψe > 0, where sc(e) is the saved capacity of e.

Theorem 3.3. [26] Algorithm 1 solves a single-source single-sink maximum dynamic con-

traflow problem optimally in a strongly polynomial-time O(nm+ nm log n).

3.4. Multi-source multi-sink MDCF. In addressing static contraflow problems with

multiple sources and sinks, the inclusion of super-terminals is a common strategy. These

super-terminals are then appropriately connected to the sources and sinks. However, it’s

worth noting that this approach becomes irrelevant in dynamic scenarios. Consequently,

the dynamic contraflow problem, involving numerous sources and sinks, is proven to be

NP-complete. Kim et al. [39] provided a sketch of the proof of NP-completeness. However,

rigorous proof of the problem has been developed by Rebennack et al. [26] using reduction
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by the same problem, 3-SAT. From the 3-SAT problem author constructed a graph G3SAT =

(N,E) for multi-source multi-sink MDCF with the help of clauses and variables. Garey and

Johnson [60] proved that 3-SAT is NP-complete in the strong sense. The equivalence of

3-SAT and G3SAT = (N,E) for multi-source multi-sink MDCF network problems show that

multi-source multi-sink MDCF problem is at least as hard as the 3-SAT problem. Hence,

it is NP-complete in the strong sense.

In brief, the methods maximum static and dynamic contraflow revert lanes on the fly

and are blind to whether or not they revert a lane. In the case of static flows or s-t dynamic

flows, this is unproblematic since, in a conventional chain decomposition, an optimal solution

can always be found by utilizing only one of the lanes throughout the whole time frame.

Nevertheless, when there are several sources and sinks, the ability to use both lanes creates

the challenge of determining whether an arc has been reversed or not. Therefore, the task

is NP-complete due to this memory and the choice of reverting the lane now or afterward.

Assume Q is a single source-sink network with a supply d at the source. The quickest

contraflow (QCF) is a flow over time of value d with the shortest time horizon that reverses

the required arcs in E at time zero. The QCF problem is the inverse of the MDCF problem.

To solve this problem in a manner similar to the MDCF problem, we need to find the

quickest flow in its temporally repeated form. Some approaches for identifying such a flow

are discussed in more detail below.

Assume ξ is a maximum dynamic single source-sink flow with a time frame T . The value

of ξ then grows as T increases. Burkard et al. [61] use this fact to create multiple methods

for determining the quickest flow. The basic concept is, to begin with, an interval [Tl, Tu]

such that vTl(ξ) ≤ d ≤ vTu(ξ), and then seek for the minimum T ∗ such that vT ∗(ξ) ≥ d.

Their methods need several calls to solve a minimum-cost circulation problem. The running

time of their highly polynomial approach is O(m2log3n(m+ nlogn)).

Using the concept that the temporally repeated maximum flow over time with a time

frame T may be achieved by obtaining the static flow that maximizes Tv(ψ)−
∑

e∈E τeψe

(Ford & Fulkerson [10], Fleischer and Tardos [18]).

Lin and Jaillet [62] introduced the QFP as the fractional programming problem for the

network Q = (N,E, b, s, t) and a supply d at s as given below

min
d+

∑
e∈E τeψe

val(ψ)
(3.1)

subject to

∑
e∈δin(v)

ψe −
∑

e∈δout(v)

ψe =


−val(ψ) if v = s

0 if v ∈ V \ {s ∪ t}
val(ψ) if v = t

(3.2)

0 ≤ ψe ≤ ue, ∀ e ∈ E(3.3)

Authors in [62] applied a cost scaling algorithm to compute the solution of the problem

in running time O(n3log(nC)). Saho and Shigeno [63] improved this bound by using the
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cancel and tighten algorithm to O(nm2log2n). The quickest contraflow problem is solved

within the same complexity in [64].

Dhamala and Pyakurel [65] and Pyakurel [66] use time as a discrete parameter to

address the earliest arrival and maximum contraflow issues. Pyakurel and Dhamala [67,

68] discuss how to solve such issues in a continuous-time scenario. The same authors

in [69] devise pseudo-polynomial time methods to solve the earliest arrival contraflow on

single-source single-sink networks. They additionally present the lexicographic maximum

dynamic contraflow issue, wherein the flow is maximized in a given priority sequence, and

develop polynomial-time solution techniques. The earliest arrival transshipment contraflow

(EATCF) problem is solved on a multi-source single-sink network using a polynomial-time

approach in Pyakurel and Dhamala [68] with the provided supply and demands. The

problem can also be solved on a multi-sink network with a polynomial-time efficiency if

each edge has a zero travel time.

They provide approximation strategies to tackle the EATCF problem for the multi-

terminal network. In Pyakurel and Dhamala [68] and Pyakurel et al. [70], discrete-time

approaches are extended to continuous-time strategies. The maximum generalized dynamic

contraflow problems are investigated in Pyakurel et al. [71]. The network flow method,

wherein a network is depicted as a group of vertices and edges, is used in the analytical

approaches outlined above. A formulation of a similar problem using abstract flow on

abstract networks in which a network is assumed to be made up of elements and pathways

has recently garnered attention.

Pyakurel et al. [70, 72] introduced the lane reversals technique in network with elements

and paths instead of nodes and arcs known as an abstract network, and presented algorithms

for solving the maximum static and maximum dynamic contraflow problems in continuous-

time settings. Authors in [73] examined models and solutions for abstract contraflow issues

with discrete-time settings. Dhungana and Dhamala in [74] investigated at the challenge of

optimizing flow within a budget while taking into account the cost of arc reversals.

3.5. Maximum dynamic contraflow with intermediate storage. Authors in [35] in-

vestigated dynamic contraflow problems with intermediate storage. The network’s con-

traflow arrangement, in particular, has been evaluated from an emergency standpoint. This

reconfiguration flow model with intermediate storage can be employed if the intermediate

nodes were created to fulfill the needs of emergency scenarios due to various large-scale

disasters. The MDCF problem with intermediate storage optimizes flow departing from the

source and sends flow as far as feasible towards the sink in the specified time frame T by

reverting the orientation of lanes from the begining. They presented an algorithm to solve

the problem in a polynomial-time.

Theorem 3.4. [35] Algorithm 2 computes two terminal MDCF problem with intermediate

storage optimally in a polynomial-time.

In all the problems discussed above, travel time is symmetric on parallel but oppositely

oriented arcs. However, in real-life scenarios it may not be symmetrical. Bhandari and
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Algorithm 2: [35] The MDCF Algorithm with Intermediate Storage

Input : A network Q = (N,E, b, u, τ, s, t, T ) with symmetric travel time on arcs

Output: A MDCF with intermediate storage on Q
(1) The network Q is transformed into Qa = (V,Ea, ba, u, τa, s, S−, T ) as

ba = be + ber ,

τa :=

{
τe e ∈ E,
τer otherwise.

(2) Construct the modified auxiliary network.

• Compute the minimum distance d(s, v),∀v ∈ I with
∑

e∈δ−(v) be ≤ uv.
• Assign first priority to the sink, second priority to the farthest intermediate

vertex v and so on.

• Transform the single-source multi-sink network by creating dummy locations.

(3) Compute the prioritized maximum dynamic flow, without intermediate storage on

modified auxiliary network.

(4) Decompose the flow into path and cycles and remove all cycle flows.

(5) Revert er ∈ E to the capacity ψe − be iff ψe > be, be replaced by 0 whenever e /∈ E.

(6) For any e ∈ E, if er is reverted, sc(e
r) = ba − ψe and sc(e) = 0. If neither e nor er

is reverted, sc(e) = be − ψe > 0, where sc(e) is the saved capacity of e.

Khadka [75] consider the two-terminal maximum dynamic contraflow issue on anti-parallel

arcs with non-symmetric travel times so that the reversals utilize the same arc travel time

as previously. Using the technique of [26], this interprets the situation of parallel arcs on

a network. Nath et al. [27] addressed the contraflow problem on lanes with non-symmetric

capacity and travel time and offered a new approach to handle the problem in which a

reverted edge takes the same transmission time as its unreverted counterpart. As a result,

it modifies the algorithm of [26] by using the fact of asymmetric arc trip durations. All

the steps of the algorithm are same only transit time on the auxiliary arc is defined by

the Equation 2.3. Hence, the complexity is also same. Authors in [28] proposed the multi-

source single-sink EATCF and lexicographic maximum dynamic partial contraflow problems

and provided polynomial-time solution utilizing the method of Nath et al. [27]. They also

extended this approach to generalized dynamic partial contraflow in [29]. However, for

easy reference, we summarize the currently known complexities for single-commodity flow

problems with symmetric and asymmetric transit times on anti-parallel arcs in Table 3.

4. Multi-commodity Contraflow

The multi-commodity network flow problem entails sending multiple commodities from

specific sources to corresponding sinks with the best flow assignment possible while staying

within the arcs’ capacity restrictions. It expands the single-commodity network flow prob-

lem in the sense that, if the bundle restrictions that connect flows of various commodities

traveling through the same arc are ignored, an MCNF problem may be seen as multiple

independent single-commodity flow problems. MCNF problems are classified into static and
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Table 3. Complexity of Contraflow Problems

Single Commodity with τe = τer Date Complexity References

Maximum Dynamic Flow

& Quickest Flow 2010 Strongly polynomial [26]

Earliest Arrival Problem on SP-graph 2013 Polynomial [65]

Generalized Maximum Dynamic Flow

on Lossy Network 2014 Pseudo polynomial [71]

Continuous Time Dynamic 2016, 17 Polynomial-time [67, 68]

Abstract Flow 2017,18 Polynomial-time [70, 72]

Inflow Dependent Transit Times 2019 Polynomial-time [64]

MDF with Arc Switching Cost 2020 Polynomial-time [74]

Dynamic Flow

with Intermediate Storage 2020 Polynomial-time [84]

Single-commodity with τe 6= τer

Maximum Dynamic Flow

& Quickest Flow 2020 Strongly polynomial [75]

2021 Strongly polynomial [27]

Maximum Lexicographic Flow

Earliest Arrival Transshipment 2021 Polynomial, pseudo polynomial [28]

Generalized Flow 2021 Pseudo polynomial [29]

Dynamic Flow

with Intermediate Storage 2021 Polynomial-time [34]

dynamic MCNF problems. Many researchers have extended the models and algorithms by

adding different aspects of the problem such as maximum flow, maximum concurrent flow,

quickest flow, and minimum cost flow. For more details we refers to [76, 77, 78, 79, 80, 81, 82]

and references therein.

This problem was first introduced by Ford and Fulkerson [10]. Because they carry more

than one commodity, multi-commodity flow issues in bundle arcs differ significantly from

single-commodity flow problems. Unlike multi-commodity models, single-commodity mod-

els cancel flows, preventing cycles in opposing directions. The goal of the maximum MCNF

issue is to maximize the total of all commodity flows between their origins and destinations.

The inverse of this problem wherein, instead of maximizing the flow, the delivery time to

satisfy the demands of commodities is minimized is known as the QMCF problem. The

static version of the MCNF problem is solved polynomially, whereas the dynamic version

is NP-hard [83]. The authors in [30, 84, 85, 86] introduced MDMCF and QMCF with lane

reversals and presented approximation algorithms. Gupta et al. [87] introduced contrflow

approach in the generalized multi-commodity flow problem and provided the solution.

4.1. Solution approach to MDMCF with lane reversals. Ford and Fulkerson [11]

proposed the notion of time expansion to solve the problem of maximum flow over time.

In the scenario of a dynamic MCNF problem this well-known technique can be used. The
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equivalence of static MCNF on a time-expanded graph and MCNF over time on the orig-

inal network has been demonstrated by Kappmeier [88]. It can be addressed in pseudo-

polynomial running time because the dynamic MCNF issue on network Q is reduced to the

static MCNF problem on a time-expanded network QT .

Example 4.1. Suppose a two-commodity network having capacity and transmission time

on lanes, (cf. Figure 4(i)) and T=6. The maximum flow from the sources si to the corre-

sponding sinks ti is 21 units. By using partial contraflow approach the maximum flow with

symmetric transit time is 27 units, whereas with asymmetric transit time is 38 units and

preserves the unoccupied arc capacity (cf. Figure 4(ii), Figure 5, and Table 4).

3,2

3,25,1

10, 2(1)2,2

4,1

3,1 5,1

s1 s2

x

y

t1t2

(i)

6,25,1

12,2(1)

7,1 5,1

s1 s2

x

y

t1t2

(ii)

Figure 4. (i) Given two-commodity network (ii) network after contraflow.

Table 4. Maximum Flow before and after CF with STT and ATT, taking T=6

Paths Time without CF TF CF(STT) TF CF(AST) TF

s1 − x− y − t1 4 (3) 5 15 5 15 5 20

s2 − x− y − t2 5 (4) 3 6 6 12 6 18

Total 21 27 38

TF=Total Flow, STT = Symmetric Transit Times, ATT = Asymmetric Transit Times

To compute the solution of the maximum dynamic MCNF problem with partial con-

traflow, authors in [84] presented Algorithm 3.

Theorem 4.2. [84]Algorithm 3 provides a pseudo-polynomial time solution to the MDMCF

problem with partial lane reversals.

To solve the difficulties of time expansion, a scaling method might be used, in which

every vertex and arc is replaced by T/∆ copies instead of T , greatly lowering the problem

size and establishing a compromise between the precision of the solution and the algorithm’s

running time. By using the scaling approach an FPTAS is presented to solve the MDMCF

problem in [84].
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s1 s2 x y t1 t2

T = 0

T = 1

T = 2

T = 3

T = 4

T = 5

T = 6

Figure 5. Time-expanded network of Figure 4 (ii)

Algorithm 3: [84]Algorithm for MDMCF with Partial Contraflow

Input : A network Q = (N,E, u, τ,K, S+, S−, T )

Output: The MDMCF with contraflow

(1) A network Q is transformed into

QT = (NT , ET = EM ∪ EH ∪ E+ ∪ E−,K, b, τ, S′+, S′−, T )

(2) Construct a modified network QaT = (NT , E
a
T , b

a, τaK,S′+, S
′
−, T ) by combining

two-way arc capacities.

(3) Find a MSMCF solution on QaT .

(4) Decompose the flow along the si − ti, ∀i ∈ K paths and cycles and remove cycle

flows .

(5) Revert er(θ) ∈ ET up to the capacity ψa(θ)− ue(θ) iff ψa(θ) > ue(θ), ue replaced

by 0 whenever e(θ) /∈ AT where ψe =
∑k

i=1 ψ
i
e and ue =

∑k
i=1 u

i
e.

(6) For every e(θ) ∈ AT , if er(θ) is reverted, sc(e
r(θ)) = uae(θ)− ψe(θ) and

sc(e(θ)) = 0. If neither e nor er is reverted, sc(e(θ)) = ue(θ)− ψe(θ) > 0, where

sc(e(θ)) is the saved capacity of e.

Authors in [30] modified Algorithm 3 to the case of non-symmetric transit times on

anti-parallel arcs by using relation 2.3, and the same approach is applied to compute the

solution of EAMCT in pseudo-polynomial time complexity.
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4.2. Approximation approach to QMCCF. The quickest multi-commodity flow prob-

lem contains the transshipment of various commodities from their respective supply points

to corresponding destination points through a network system so the total demand of every

commodity is met within the shortest computation time for given supplies and demands.

Even in the case of a series-parallel network or only two commodities, Hall et al. [83] have

proved that the dynamic MCNF issue is NP-hard. They also established that the QMCF

issue is NP-hard with or without intermediate storage and simple pathways. To address

the QMCF issue with polynomial-time complexity, Fleischer and Skutella [89] proposed a

length-bounded approximation and a condensed time expanded graph. If the flow on each

route P ∈ Pi can be decomposed into the sum of flows ψiP , i.e., ψi =
∑

P∈Pi
ψiP with

ψiP > 0, the multi-commodity path flow ψi meeting demands and supplies di at terminals

S+∪S+ is a T-length bounded flow if τP =
∑

e∈P τe ≤ T . PT
i = {P ∈ Pi : τP ≤ T} ⊆ Pi de-

notes the collection of all T -length bounded pathways. Because the T -length bounded static

flow problem meeting multi-commodity needs is NP-hard, [89] presents an approximation

solution with polynomial-time complexity.

Authors in [85, 86] incorporated the lane reversals approach in the QMCF and intro-

duced the QMCCF problem in discrete and continuous-time settings. Based on the approach

of [89], the authors of [85] presented a length-bound approximation and an FPTAS by using

the condensed network. Furthermore, with the help of the natural transformation of [18],

it can be extended to a continuous-time parameter in [86].

Algorithm 4: [85] FPTAS for QMCCF Problem

Input : A network Q = (N,E,K, b, τ, di, S+, S−, T )

Output: The continuous-time QMCCF

(1) Transform network Q into Q∆a = (N,Ea,K, ba, τa, di, S+, S−, T ) as

bae = ∆(be + ber)

τa :=

{
dτe/∆e∆ if e ∈ E
dτ←−e /∆e∆ otherwise.

(2) Compute the QMCF on Q∆a by using FPTAS Core of [89].

(3) Decompose the flow along the si − ti, ∀i paths and cycles and remove cycle flows.

(4) Revert er ∈ E up to the capacity ψe − be iff ψe > be, be replaced by 0 whenever

e /∈ E, ∀i, where ψe =
∑k

i=1 ψ
i
e.

(5) For each e ∈ E, if er is reverted, sc(e
r) = ba − ψe and sc(e) = 0. If neither e nor er

is reverted, sc(e) = be − ψe > 0, where sc(e) is the saved capacity of e.

Theorem 4.3. [85] An FPTAS for the QMCF problem with bounded cost can be computed

on an auxiliary network in a fully polynomial-time.

Example 4.4. Assume the networks as depicted in Figure ??(i) with demands d1 = 10, d2 =

12. To compute the quickest time without lane reversals by using length bound approx-

imation (cf. Figure 4(i)), 4-length bound is essential and repeated two times. So, the

quickest time to satisfy the demand for the Commodity-1 is T = 5. Similarly, 5-length
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bounded is essential and repeated four times. So, the quickest time to fulfill the demand

for Commodity-2 is T = 8. Hence the minimum time to satisfy both the demands is T = 8.

On the other hand, if contraflow is applied (cf. Figure 4(ii)), then it takes T = 6 units of

time to fulfill both the demands.

Next, construct a condensed time expended network by taking ∆ = 2 and scaling the

capacity and transit time on arcs of the network depicted in Figure 4(ii). The quickest time

to satisfy both the demands after contraflow is T = 6. Since the size of the time-expanded

graph is reduced by the factor of ∆ in the ∆-condensed time expanded graph it provides a

fully polynomial-time solution (cf. Figure 6).

s1 s2 x y t1 t2

T = 0

T = 2

T = 4

T = 6

Figure 6. Condensed time-expanded graph of Figure 4 (ii)

Table 5 summarizes the currently known complexities for multi-commodity flow prob-

lems with symmetric and asymmetric transit times on anti-parallel arcs for quick reference.

Table 5. Complexity of Contraflow Problems

Multi-Commodity with τe = τer Date Complexity Approximation References

Quickest Transshipment 2020 NP-hard PTAS, FPTAS [85]

Maximum Flow Over Time 2020 Pseudo polynomial FPTAS [84]

Continuous Time

Quickest Transshipment 2020 NP-hard PTAS, FPTAS [86]

Generalized Multicommodity 2023 NP-hard PTAS, FPTAS [87]

Multi-Commodity with τe 6= τer

Maximum Multicommodity Flow

with Intermediate Storage 2021 pseudo polynomial - [36]

Maximum Dynamic Flow 2022 Pseudo polynomial - [30]

Quickest Multicommodity 2022,23 NP-hard PTAS, FPTAS [31, 32]

5. Conclusions

Due to the increasingly wide applications and important impacts of the contraflows,

this paper surveys the mathematical models, solution approaches, and applications of the
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single and multi-commodity contraflow problems. We illustrated the single-commodity and

multi-commodity flow models with partial lane reversal strategies that are very relevant in

saving the capacity of unoccupied lanes that can be used for the placement of facilities or

logistics support in emergencies maximizing the flow value and reducing the transmission

time. This work includes heuristics, simulations, and analytical approaches for solving

contraflow problems. The focus is on analytical approaches of maximum static, maximum

dynamic, lexicographic maximum static, lexicographic maximum dynamic, quickest, earliest

arrival, generalized static, and generalized dynamic contraflow problems with symmetric and

non-symmetric tranmission times on anti-parallel arcs appeared in the literature in the last

two decades for single-commodity.

The maximum MCNF problem aims to optimize the aggregate of all commodities in a

particular period by shipping various commodities (goods) on an underlying network archi-

tecture while adhering to capacity limits on the lanes. The study also includes approaches to

maximum static, maximum dynamic, and quickest multi-commodity contraflow problems.

The applications of these problems vary from emergency evacuation, rush hour traf-

fic management, routing in logistics and transportation networks, and message routing in

telecommunication. The insights into the offered models and solution techniques cover

multiple challenges for the operations research community in dealing with even more com-

plicated models and alternative approaches to solving that might tackle complex real-life

situations. The study objectives are of theoretical as well as practical interests. We be-

lieve that this research will lead to a variety of new directions for model development and

investigation of novel solution methodologies.

Acknowledgments

The first author (Shiva Prakash Gupta) thanks the University Grants Commission,

Nepal, for the Ph.D. research fellowship award 2018 with award no. PhD/074-75/S&T-10

and second author (Urmila Pyakurel) thanks to the Alexander von Humboldt Foundation

for Remote Cooperation Abroad Fellowship (March 1 - August 30, 2022).

The authors would also like to thank the anonymous referees and the editor for their

valuable suggestions to improve the quality of this paper.

References

1. I.S. Kotsireas, A. Nagurney, and P.M. Pardalos (Eds.). Dynamics of disasters - key concepts, models,

algorithms, and insights, Springer Proceedings in Mathematics and Statistics, 2015.

2. S.E. Lovetskii and I.I. Melamed. Dynamic flows in networks. Automation and Remote Control, 48(11),

1417-1434, 1987.

3. J.E. Aronson. A survey of dynamic network flows. Annals of Operations Research, 20, 1-66, 1989.

4. H.W. Hamacher and S.A. Tjandra. Mathematical modeling of evacuation problems: A state of the art. In:

M. Schreckenberger and S.D. Sharma (Eds.), Pedestrain and Evacuation Dynamics, Springer, 227-266,

2002.

5. T. Cova and J.P. Johnson. A network flow model for lane-based evacuation routing. Transportation

Research Part A: Policy and Practice, 37, 579-604, 2003.



30 SHIVA P. GUPTA, URMILA PYAKUREL, TANKA N. DHAMALA

6. B. Kotnyek. An annotated overview of dynamic network flows. Technical Report, INRIA, Sophia Antipolis,

1-28, 2003.

7. M. Yusoff, J. Ariffin, and A. Mohamed. Optimization approaches for macroscopic emergency evacuation

planning: a survey. Information Technology, ITSim, International Symposium, IEEE, 3, 1-7, 2008.

8. M. Skutella. An introduction to network flows over time. In Research trends in combinatorial optimization,

451-482, 2009.

9. T.N. Dhamala, U. Pyakurel, and S. Dempe. A critical survey on the network optimization algorithms for

evacuation planning problems. International Journal of Operations Research, 15(3), 101-133, 2018.

10. L.R. Ford and D.R. Fulkerson. Constructing maximal dynamic flows from static flows, Operations Re-

search, 6, 419-433, 1958.

11. L.R. Ford and D.R. Fulkerson. Flows in networks. Princeton University Press, Princeton, New jersey,

1962.

12. D. Gale. Transient flows in networks, Michigan Mathematical Journal, 6, 59-63, 1959.

13. W.L. Wilkinson. An algorithm for universal maximal dynamic flows in a network, Operations Research,

19, 1602-1612, 1971.

14. E. Minieka. Maximal, lexicographic, and dynamic network flows, Operations Research, 21, 517-527, 1973.

15. N. Baumann and M. Skutella. Earliest arrival flows with multiple sources, Mathematics of Operations

Research, 34, 499-512, 2009.

16. B. Hoppe and E. Tardos. Polynomial time algorithms for some evacuation problems, Proceeding of 5th

Annual ACM-SIAM Symp. on Discrete Algorithms, 433-441, 1994.

17. B. Hoppe. Efficient Dynamic Network Flow Algorithms, Ph.D. thesis, Cornell University, 1995.

18. L. Fleischer and E. Tardos. Efficient continuous-time dynamic network flow algorithms, Oper. Res.

Letter, 23, 71-80, 1998.

19. W.S. Jwell. Optimal flow through networks with gains. Operations Research, 10, 476-499, 1962.

20. K. Onaga. Dynamic programming of optimum flows in lossy communication nets. IEEE Transactions

on Circuit Theory, 13, 282-287, 1966.

21. K. Onaga. Optimal flows in general communication networks. Journal of the Franklin Institute, 282(4),

308-327, 1967.

22. A.V. Goldberg, S.A. Plotkin, and E. Tardos. Combinatorial algorithms for the generalized circulation

problems. Mathematics of Operations Research, 16, 351-379, 1991.

23. M. Gross and M. Skutella. Generalized maximum flows over time. Approximation and Online Algorithms

Lecture Notes in Computer Science, 7164, 247-260, 2012.

24. M. Gross. Approximation algorithms for complex network flow over time problems. PhD Thesis, Technical

University, Berlin, Germany, 2014.

25. A. Arulselvan. Network model for disaster management. PhD Thesis, University of Florida, USA, 2009.

26. S. Rebennack, A. Arulselvan, L. Elefteriadou, and P.M. Pardalos. Complexity analysis for maximum

flow problems with arc reversals. Journal of Combinatorial Optimization, 19, 200-216, 2010.

27. H.N. Nath, U. Pyakurel, and T.N. Dhamala. Network reconfiguration with orientation dependent transit

times. International Journal of Mathematics and Mathematical Sciences, Hindawi, 2021, 1-11, 2021.

Article ID 6613622, 11 pages https://doi.org/10.1155/2021/6613622.

28. S.P. Gupta, U. Pyakurel, and T.N. Dhamala. Network flows with arc reversals and non-symmetric transit

times. American Journal of Mathematics and Statistics, 11(2), 27-33, 2021.

29. S.P. Gupta, U. Pyakurel, and T.N. Dhamala. Generalized dynamic contraflow with non-symmetric

transit times. American Journal of Computational and Applied Mathematics, 11(1), 12-17, 2021.

30. S.P. Gupta, U. Pyakurel, and T.N. Dhamala. Dynamic multi-commodity contraflow problem with asym-

metric transit times. Journal of Applied Mathematics, Hindawi, 2022, 1-8, 2022. Article ID 3697141,

https://doi.org/10.1155/2022/3697141.

31. S.P. Gupta, U. Pyakurel, and T.N. Dhamala. An FPTAS for Quickest multi-commodity contraflow

problem with asymmetric transit times. Journal of Institute of Science and Technology, 27(1), 101-107,

2022. https://doi.org/10.3126/jist.v27i1.46666.



OPTIMAL RECONFIGURATION OF NETWORK WITH VARIANT TRANSMISSION TIMES ON ARCS 31

32. S.P. Gupta, U. Pyakurel, and T.N. Dhamala. Quickest multi-commodity contraflow with non-

symmetric traversal times. Mathematics and Computer Science, Wiley, volume 2, 239-250, 2023.

https://doi.org/10.1002/9781119896715.ch16.

33. S.P. Gupta. Models and algorithms for flow over time problems. PhD Thesis, Tribhuvan University,

Kathmandu, Nepal, 2023.

34. D.P. Khanal, U. Pyakurel, and S. Dempe. Dynamic contraflow with orientation dependent transit times

allowing intermediate storage. The Nepali Math. Sci. Report, 38(2), 1-12, 2021.

35. U. Pyakurel and S. Dempe. Network flow with intermediate storage: models and algorithms. SN Oper-

ations Research Forum, 2020, 1-37, 2020.

36. D.P. Khanal, U. Pyakurel, and T.N. Dhamala. Maximum multicommodity flow with in-

termediate storage. Mathematical Problems in Engineering, Hindawi, 2021, 1-11, 2021. DOI:

https://doi.org/10.1155/2021/5063207.

37. Theodoulou, Gregoris, and B. Wolshon. Alternative methods to increase the effectiveness of freeway

contraflow evacuation. Transportation Research Record, 1865(1), 48-56, 2004.

38. S. Kim and S. Shekhar. Contraflow network reconfiguration for evacuation planning: a summary of

results. Proceedings of 13th ACM Symposium on Advances in Geographic Information Systems (GIS 05),

250-259, 2005.

39. S. Kim, S. Shekhar, and M. Min. Contraflow transportation network reconfiguration for evacuation route

planning. IEEE Transactions on Knowledge and Data Engineering, 20, 1-15, 2008.

40. C. Vogiatzis, R. Yoshida, I. Aviles-Spadoni, S. Imamoto, and P.M. Pardalos. Livestock evacuation plan-

ning for natural and man-made emergencies. International Journal of Mass Emergencies and Disasters,

31(1), 25-37, 2013.

41. G. Hamza-Lup, K.A. Hua, M. Le, and R. Peng. Enhancing intelligent transportation systems to improve

and support homeland security. Proceedings of the Seventh IEEE International Conference, Intelligent

Transportation Systems (ITSC), 250-255, 2004.

42. T. Litman. Lessons from Katrina and Rita: what major disasters can teach transportation planners.

Journal of Transportation Engineering, 132(1), 11-18, 2006.

43. B. Wolshon. Contraflow for evacuation traffic management. Encyclopedia of GIS, 165-170, 2008.

Doi:10.1007/978-0-387-35973-1−210.

44. G. Theodoulou and B. Wolshon. Alternative methods to increase the effectiveness of freeway contraflow

evacuation. Transportation Research Record, 1865(1), 48-56, 2004.

45. E. Kwon and S. Pitt. Evaluation of emergency evacuation strategies for downtown event traffic using a

dynamic network model. Transportation Research Record, 1992(1), 149-155, 2005.

46. Y.C. Chiu, H. Zheng, J.A. Villalobos, W. Peacock, and R. Henk. Evaluating regional contraflow and

phased evacuation strategies for Texas using a large-scale dynamic traffic simulation and assignment

approach. Journal of Homeland Security and Emergency Management, 5(1), 1-29, 2008.

47. H. Tuydes and A. Ziliaskopoulos. Tabu-based heuristic approach for optimization of network evacuation

contraflow. Transportation Research Record, 1964(1), 157-168, 2006.

48. Q. Meng and H.L. Khoo. Optimizing contraflow scheduling problem: model and algorithm. Journal of

Intelligent Transportation Systems, 12(3), 126-138, 2008.

49. A. Karoonsoontawong and D.Y. Lin. Time-varying lane-based capacity reversibility for traffic manage-

ment. Computer-Aided Civil and Infrastructure Engineering, 26(8), 632-646, 2011.

50. J.W. Wang, W.H. Ip, and W.J. Zhang. An integrated road construction and resource planning approach

to the evacuation of victims from single source to multiple destinations. IEEE Transactions on Intelligent

Transportation Systems, 11(2), 277-289, 2010.

51. J.W. Wang, H.F. Wang, W.J. Zhang, W.H. Ip, and K. Furuta. Evacuation planning based on the

contraflow technique with consideration of evacuation priorities and traffic setup time. IEEE Transactions

on Intelligent Transportation Systems, 14(1), 480-485, 2013.

52. N. Lv, X. Yan, K. Xu, and C. Wu. Bi-level programming based contraflow optimization for evacuation

events. Kybernetes, 39(8), 1227-1234, 2010.



32 SHIVA P. GUPTA, URMILA PYAKUREL, TANKA N. DHAMALA

53. C. Xie and M.A. Turnquist. Lane-based evacuation network optimization: an integrated Lagrangian

relaxation and tabu search approach. Transportation Research Part C, 19(1), 40-63, 2011.

54. C. Xie, D.Y. Lin, and S.T. Waller. A dynamic evacuation network optimization problem with lane

reversal and crossing elimination strategies. Transportation Research Part E, 46(3), 295-316, 2010.

55. J. Hua, G. Ren, Y. Cheng, and B. Ran. An integrated contraflow strategy for multimodal evacuation.

Mathematical Problems in Engineering, Hindawi, 2014, 1–10, 2014.

56. W. Leyu, X. Jinliang, L. Tian, L. Menghui, L. Xingliang, and L. Haoru. Simulation and experimental

analyses of microscopic traffic characteristics under a contraflow strategy. Applied Sciences, 9(13), 1-15,

2019.

57. S.A. Bagloee, K.H. Johansson, and M. Asadi. A hybrid machine-learning and optimization method for

contraflow design in post-disaster cases and traffic management scenarios. Expert Systems With Applica-

tions, 124, 67-81, 2019.

58. S. Wollenstein-Betech, I.C. Paschalidis, and C.G. Cassandras. Planning strategies for lane reversals in

transportation networks In: IEEE International Intelligent Transportation Systems Conference (ITSC),

2131-2136, 2021.

59. A. Darvishan and G.J. Lim. Dynamic network flow optimization for real-time evacuation reroute plan-

ning under multiple road disruptions. Reliability Engineering and System Safety, Elsevier, 214, 1-28,

2021.

60. M.R. Garey and D.S. Johnson. Transient flows in networks. Computers and Intractability. Freeman San

Francisco, 1973.

61. R.E. Burkard, K. Dlaska, and B. Klinz. The quickest flow problem, ZOR-Methods and Models of Oper-

ations Research, 37, 31-58, 1993.

62. M. Lin and P. Jaillet. On the quickest flow problem in dynamic networks: A parametric min-cost flow

approach. In: Proceedings of the Twenty-Sixth Annual ACM-SIAM Symposium on Discrete Algorithms,

Philadelphia: Society for Industrial and Applied Mathematics, 1343-1356, 2015.

63. M. Saho and M. Shigeno. Cancel-and-tighten algorithm for quickest flow problems. Networks, 69, 179-

188, 2017.

64. U. Pyakurel, H.N. Nath, S. Dempe, and T.N. Dhamala. Efficient dynamic flow algorithms for evacuation

planning problems with partial lane reversal. Mathematics, 7, 1-29, 2019.

65. T.N. Dhamala and U. Pyakurel. Earliest arrival contraflow problem on series-parallel graphs, Interna-

tional Journal of Operations Research, 10(1), 1-13, 2013.

66. U. Pyakurel. Evacuation planning problem with contraflow approach. PhD Thesis, Tribhuvan University,

Kathmandu, Nepal, 2015.

67. U. Pyakurel and T.N. Dhamala. Continuous time dynamic contraflow models and algorithms. Advances

in Operations Research - Hindawi, 2016, 1-7, 2016. Article ID 368587.

68. U. Pyakurel and T.N. Dhamala. Evacuation planning by earliest arrival contraflow. Journal of Industrial

and Management Optimization, 13, 487-501, 2017.

69. U. Pyakurel and T.N. Dhamala. Models and algorithms on contraflow evacuation planning network

problems. International Journal of Operations Research, 12, 36-46, 2015.

70. U. Pyakurel, T.N. Dhamala, and S. Dempe. Efficient continuous contraflow algorithms for evacuation

planning problems. Annals of Operations Research (ANOR), 254, 335-364, 2017.

71. U. Pyakurel, H.W. Hamacher, and T.N. Dhamala. Generalized maximum dynamic contraflow on lossy

network, International Journal of Operations Research Nepal, 3(1), 27-44, 2014.

72. U. Pyakurel, H.N. Nath, and T.N. Dhamala. Partial contraflow with path reversals for evacuation

planning. Annals of Operations Research (ANOR), 283(1-2), 591-612, 2019.

73. R.C. Dhungana, U. Pyakurel, and T.N. Dhamala. Abstract contraflow models and solution procedures

for evacuation planning. Journal of Mathematics Research, 10(4), 89-100, 2018.

74. R.C. Dhungana and T.N. Dhamala. Flow improvement in evacuation planning with budget constrained

switching costs. International Journal of Mathematics and Mathematical Sciences-Hindawi, 2020, 1-10,

2020. Article ID 1605806, https://doi.org/10.1155/2020/1605806.



OPTIMAL RECONFIGURATION OF NETWORK WITH VARIANT TRANSMISSION TIMES ON ARCS 33

75. P.P. Bhandari and S.R. Khadka. Evacuation contraflow problems with not necessarily equal transit time

on anti-parallel arcs. American Journal of Applied Mathematics, 8(4), 230-235, 2020.

76. R.K. Ahuja, T.L. Mangati, and J.B. Orlin. Network flows: theory, algorithm, and applications. Prentice

Hall, Englewood Cliffs, 1993.

77. A. Ali, R. Helgason, J. Kennington, and H. Lall. Computational comparison among three multi-

commodity network flow algorithms. Operations Research, 28(4), 995-1000, 1980.

78. A. Assad. Multi-commodity network flows a survey. Networks, 8(1), 37-91, 1978.

79. J. Kennington. A survey of linear cost multi-commodity network flows. Operations Research, 26(2),

209-236, 1978.

80. K. Salimifard and S. Bigharaz. The multi-commodity network flow problem: state of the art classification,

applications, and solution methods. Springer, 1-47, 2020.

81. I.-L. Wang. Multi-commodity network flows: A survey, part I: applications and formulations, Interna-

tional Journal of Operations Research, 15(4), 145-153, 2018.

82. I.-L. Wang. Multi-commodity network flows: A survey, part II: solution methods, International Journal

of Operations Research, 15(4), 155-173, 2018.

83. A. Hall, S. Hippler, and M. Skutella. Multi-commodity flows over time: efficient algorithms and com-

plexity. Science Direct, 379, 387-404, 2007.

84. U. Pyakurel, S.P. Gupta, D.P. Khanal, and T.N. Dhamala. Efficient algorithms on multi-commodity flow

over time problems with partial lane reversals. International Journal of Mathematics and Mathematical

Sciences, Hindawi, 2020, 1-13, 2020. Article ID 2676378, https://doi.org/10.1155/2020/2676378.

85. T.N. Dhamala, S.P. Gupta, D.P. Khanal, and U.P. Pyakurel. Quickest multi-commodity flow over time

with partial lane reversals. Journal of Mathematics and Statistics, 16(1), 198-211, 2020.

86. S.P. Gupta, D.P. Khanal, U. Pyakurel, and T.N. Dhamala. Approximate algorithms for continuous-time

quickest multi-commodity contraflow problem. The Nepali Mathematical Sciences Report, 37(1-2), 30-46,

2020.

87. S.P. Gupta, U. Pyakurel, and T.N. Dhamala. Multi-commodity flow problem on lossy net-

work with partial lane reversals. Annals of Operations Research (ANOR), 323, 45-63, 2023.

https://doi.org/10.1007/s10479-023-05210-y.

88. P.W. Kappmeier. Generalizations of flows over time with application in evacuation optimization. PhD

Thesis, Technical University, Berlin, Germany, 2015.

89. L. Fleischer and M. Skutella. Quickest flows over time. SIAM Journal on Computing, 36(6), 1600-1630,

2007.


	1. Introduction
	2. Preliminaries
	2.1. Auxiliary Network
	2.2. Flow models and notations
	2.3. Flow model with intermediate storage

	3. Solution Approaches
	3.1. Contraflow reconfiguration
	3.2. Heuristics and simulation
	3.3. Analytical solutions
	3.4. Multi-source multi-sink MDCF
	3.5. Maximum dynamic contraflow with intermediate storage

	4. Multi-commodity Contraflow
	4.1. Solution approach to MDMCF with lane reversals
	4.2. Approximation approach to QMCCF

	5. Conclusions
	Acknowledgments
	References

