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Abstract: The law of the iterated logarithm for tail sum, abbreviated Tail LIL, was first introduced by R.
Salem and S. Zygmund for sums of lacunary series. Tow and Teicher later introduced a corresponding result
for independent random variables. Our article takes a different approach and focuses on obtaining one sided

Tail LIL for the sums of independent and identically distributed symmetric random variables.
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1. INTRODUCTION

The law of the iterated logarithm (LIL) is a widely recognized limit law in the fields
of mathematics and statistics and it describes the asymptotic behavior of different sums of
random variables. Various versions of LIL exist in different mathematical contexts. The
initial formulation of the law was presented by A. Khintchine [6] for Bernoulli’s random
variable, and later Kolmogorov [7] extended his result to independent random variables.
Following the introduction of Kolmogorov’s LIL, mathematicians began exploring its ap-
plication in numerous other areas of analysis. There are several contexts where researchers
are currently investigating the LIL. See, for example, [I] for various directions of the LIL.
Considerable literature on the LIL is available, providing a wealth of information in this
field. In the standard version of the LIL, we consider finite sums and the resulting LIL is
called regular LIL. However, the LIL also takes into account the tail sums of a series and
is popularly called the tail LIL. The first tail LIL result was obtained by R. Salem and A.

Zygmund [§] for the sums of lacunary trigonometric series.

Theorem 1.1 (Salem and Zygmund, 1950). Suppose a lacunary series
Sn(0) = 302 vlaw cosnklﬁ + by sinngd) where c; = a3 + be satisfies > poyq i < 00. De-
fine By = (3> net)? and My = I]ga]%<|ck|. Suppose that By < oo and that M3 <
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BQ
Ky <N> for some sequence of numbers K | 0 as N — oo. Then
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for almost every 6 in the unit circle.

The other direction of the tail LIL for the sums of lacunary series was obtained by
Ghimire and Moore [5].

Theorem 1.2 (Ghimire and Moore, 2012). Let Sp,(z) = > ;- ap cos(2mnix) such that

1 oo 2
5 a
Dbl > 0> 1 and S, a? < oo. Assume that maxaz = o 2 2k=N k . Then for
neg — q Zk:l k k>N k lnln$ f
2 2uk=N
almost every x,
(o]
. ~_aj cos(2mnx
limn sup | > hey, Gk cOS(2mnx) | o1
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n—=>00 2 5 Zk:n ak lnlnﬁ
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In what follows, random variables means variables that are independent, symmetric
and bounded and are identically distributed. Chow and Teicher [2] initially obtained a
variant of the tail LIL for random variable. S. Ghimire [4] achieved the following onesided
version of the tail LIL for random variables using an approach different from that of the
Chow and Teicher.

Theorem 1.3 (Ghimire, 2014). Let {Y;}32, be a sequence of random variables which are
independent, symmetric, bounded and identically distributed with mean zero and variance
one such that —1 <Y; < 1, and suppose {a;}3°, satisfies Y oo, a? < oo. Then

= a;Yi(t
lim sup gl:”";al it - <1
m—oo  [2%"° aZlnln %

for a.e. t €[0,1).

In this paper, we derive an onesided tail LIL with some additional hypotheses. It is
worth mentioning that our approach differs from the methodology employed by Chow and

Teicher. Our main result is the following theorem.

Theorem 1.4. Let {Y;}32, be a sequence of random variables which are independent, sym-
metric, bounded and identically distributed with mean O and variance 1 such that —1 <Y; <
1, X;=a;Yi and suppose {a;}3°; be such that > 0, a? < oo and for all € > 0, there exists
M such that m > M, a2, < 2350 a2, then for a.e. t, we have

i=m %
> a;Yi(t
lim sup Lizm %Yi(t)

e \/2 pDrai a? <ln In ==t a2)

i=m 1

> 1.
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2. PRELIMINARIES

For the proof of our main result, some definitions and estimates are in order.

Definition 2.1 (Martingales). Let {X,,}7°; be a sequence of random variables on the
measure space (Q,F, ) and {§,}°2, be a sequence of o—algebras such that §, C § for
all n. Then the sequence {(X,,8n)}>2, is said to a martingale if it satisfies the following

conditions:

(i) Fn C Fnta for all n;
(ii) X, is measurable with respect to Fy;

)
)

(iii) E(|Xy|) < oo
)

(iv) E(X,41|F,) = X, a.e. on Q.

Here a.e. stands for almost everywhere equal. The sequence is called a submartingale if and
only if the equality in (iv) is replaced by < and the sequence is called a supermartingale if

and only if the equality is replaced by > .

Theorem 2.2 (Hoeffding [3]). Let {Y;}!", be a sequence of independent random variables
with mean zero and bounded ranges such that a; < Y; < b; for all i = 1,2,..m. Then for
each A > 0, we have

6 IS 0 > 01 < 200 (o s

where |{.}| denotes the Lebesgue measure.

Theorem 2.3 (Doob’s Maximal Identity [3]). If {Y;}5°, is a sequence of submartingale,
then for any A > 0 and k € N, we have

1
: > < — .
it oy Y300 > 0| < JE ()

Theorem 2.4 (Levy’s Inequality [3]). If X1, Xo,...X,, be independent and symmetric ran-
dom variables and put Sp, = X1+ Xo+ ... + Xy, m < n. Then for all A > 0, we have

it e 15400 2 2| < 21425 15(0] 2 1)

and

it max 1301 > A <212 IS0 > V).

We next establish some useful estimates.
Lemma 2.5. Let {Y;}?°, be as in Theorem- Then for all o > 0,8 > 0, we have

(-1 +a>52> ‘

{essmmi i ol > )| < anto) e (G
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Proof. Let n > 0 and 8 > 0 be any number. Then we have

{ts 5w IS5 %01 5}

1<n<m

< Ht: sup ST, Xp(t) > BH + Ht: sup — y i Xi(t) > 5}’

1<n<m 1<n<m

= Ht: sup exp (Yp_; nXx(t)) > e”ﬁ} N

1<n<m

{t: s ew(-Smx0) > .

1<n<m

Using Doob’s maximal inequality, one can show that

en e s 1Sl > o] < 25 few IS xo)

where p denotes the Lebesgue measure. Employing Hoeffding’s theorem, we have
m —

(22) 415 X0 = 3 < 209 (53 ).

For all & > 0 and for I = [0, 1), we claim that
/IeXp (nl iy X(B)]) dp < 2v2r M (@) exp ((1/2 + a))n® XL, a?) -

Using Fubini’s theorem, one can easily show that

(2.3) Jetdu= [~ ittty > p1yas

—00

Note that for given o > 0, we can find M («) > 0 such that for all V' > 0,

(2.4) V exp <;V2> < Nexp (B + a} v2> .

Then and give

U
(25) / exp (1] i Xe0)) di < 220y S o exp (2451 )
Let us choose 1 = E b . Then, from and , we have
i=1 z

{t: s 1T x0) >BH

1<n<m

| /\

o7, exp (0l s Xi(t))

IN

2 ovamM(a)exp ((1/2+ o) Sy a?)

2
=4V2tM(a)exp | (=1/2 4+ @) =7 b 5 ]
Zz 14
Using the continuity of Lebesgue measure, we get
n (_1 + Ot)62>
t: _, Xp(t)] > <A ——
‘{ i‘gl)’Zk_l k()] BH < A(a) exp ( 25 2

for some constant A(a)) depending on «.
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Lemma 2.6. Let {X;}32, be as in Theorem[1.4l Then for a >0, 8 >0, we have

(—1+a)8? )

O R BRI

for some constant A(«).

Proof. Let m be fixed. Define

a; if i >m.

bi:{o if i < m,

Applying Lemma with {d°"" ; b;Y;} and using b; = 0 for ¢ < m, we have

]{t: Sup |0 z<>r>5}\ Afa) exp ((—1;@5)

2
n>m 2 Zi:m+1 a;

For n > m, it follows that

(2.6) Ht - sup | S X0~ X X)) > BH < A(a) exp (WW)

3 2
2 Zz’:m—l—l a;

Let M >> m. Then, using Levy’s inequality, we get

{os, o 1S s> 5| <2|{t: 1S K] > ).

m<n<M-1
Here
. _ . My 1y _ ¥ )
{ts, e 15 X0l > 5] = {0 ma 1S2 X0 - £ 601> 5|
and

{12 X)) > | = {120 X0 - 28 K] > 8}

Thus, we have

{rs, e 152 50 - S 01> )| < 2o 22, 0 - S X001 > 6

m<n<M-1

Consequently, we get

en (o mas IZH X0 - Z?=1Xi<t>|>ﬂ}\szl{t:z?ilxxt)zzzlxi(mw}\.

m<n<M

Since M >> m, it follows from and (| . that

@8) {11 X0 - T X)) > 8} < Ala)esp (HW> .

£ 2
2 Zi:m—i—l a;

From the equations (2.7)) and ({ , we have

Htr sup \ZfilXi(t)—Z?lei(t)bﬁ} <

m<n<M

A(ar) exp <W) '

2 Zi:erl a?
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Define Ay := {t: SUD, << ] Zf\il Xi(t) = >, Xi(t)| > B} and A :=Jy;_; Am. By the
continuity of Lebesgue measure, we have lim;_,o |Ap| = |A|. Then we have

{5 s [£2,0 - £, 0] > | < 24@) e (W) |

0 2
2 Ei:m-i—l a;

Ht s [T Xi(0)] > 5}] < A(a) exp (H“‘)ﬂ> .

3. PROOF OF THE MAIN RESULT

In this section, we provide a proof for our main theorem.

Let €, a be such that 0 < € << 1, 0 < a << 1 and choose 6 sufficiently large. Take
¢ > 0 satisfying (1 + €)(1 — €2)(1 — ) > 1. Let us define stopping time mj; — oo with
my <mg <--- by

G 1
mk:min<m: Z a?<9k>.

If my, is sufficiently large, then by assumption we have a,,2nk < €2 Zimk a?. Using this

together with the definition of my, we have

1
(31) (1 - 62) Zfimk az2 < Z'?ikarl a? < aik;
Again we have
2 1 2 00 2
(3.2) (1—e )efkﬁ(l—ﬁ ) 2 iz, %
Using (3.1)) and (3.2)), we have
2 1 o] 2 1
(1 — € )ﬁ < Zi:mk+1 CLi < ok
Consequently,
Z?im +1 a? 0
(3.3) (1—€*)h < 5 < .
Z;)imk+1+1 alz 1 - 62
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Using the above inequality and Lemma we get

= 0+ & |
t: sup a;Y;(t)| > a;nlh | =s—
{ MM 1 i:;‘rl 0 i:§+l Zi:mk+1 alg
o

Z a;Y;(t)
t: sup 1 > ( ;5)0(1 —¢e?)lnln (002)
m>mg.y1 Z;imqul-‘rl af Zi=mk+1+1 a;

- 1
=|{t: sup > (41 +6)(1—e€?) Z allnlh | =——
m>my41 i=mar1+1 D it
(=1 +a)4(1+ &)1 —€?) Z;’imkﬂﬂ a? Inln (oo 1 2)

i=mp+1 %
£ 2
QZi:mk+1+1 a;

IN

Zal (t) — ZaiYi(t)

i=1

< A(a) exp

— 762
< A(e) (In Qk)z(a DEa=a

Thus,
m foe) 1
{ tsup Zaz i ( —ZaiYi(t) >J4(1+§)(1—62) Z a?lnlnw}
MZME+1 | =1 i=1 i=mpy1+1 i=mr+1 71
1 1

< AlY) Gaaroa—a (In §)2(1—a) (1+6) (1=e)"
This gives
> S S 41481 -e)
Z {t : gup ZaiYi(t) - ZaiYi(t) > \/9 ) a?Inln s 1 —
k=1 MZMe+1 | =1 i=1 i=mu+1 %
< 00.

Applying Borel-Cantelli Lemma for a.e. t,

Mm>mp41 i=mp+1 4

00 m 4(1 1—€2 0o 1
sup | 000, ai(t) — S apYi(t)] < | M= s a2 inln (Zoo2>

which is true for significantly large k, say k > M.
Hence for a.e. t,

) IS5 i) — T i) PO OT-)

sup
m>my 1 \/2 > sl @ 2Inln 0

for significantly large k > M.

2
1= mk+l 7

We recall the following result on exponential bounds whose proof can be found in [9].

Theorem 3.1. Let {X} be a sequence of i.r.v. having mean 0 and variance oz. Let

k
X
Sp = ZZ:l Xk, Sn Zk 1(7k Let d = II??:L( - . Then, given v > 0, if d = d(W) is

Sn
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significantly small and o = «(y) is for significantly large, then

P (f: > a) > exp <—O;2(1 —|—’y)> .

Set S, = >0 a;Y; and s2, = Y.I* a?. Then fix v > 0 choose d(y) accordingly. Assume

=N
that my is significantly large. Then VI > my + 1, the assumption implies
d(v) d(v)
(3.5) | < 5 Siai < 5 >y G-

We take m large enough so that

(36) \/Z’L =mg+1 z S 2\/21 =mg+1 z
From (3.5) and (3.6)), we have

|au
— =< d(y)
Zi:karl a;
Then
., s <)
m 2
meistsm Zi:mk—i—l a;

Using Theorem we have,

| 21 @Yi()]

Y1 O
i=my+1 %

t:

o2
>a )| > exp <—2(1 —|—’y)> .

2(1-¢/2) 1 .
Choose o = ,| ————=Inln | = | such that & > 0. Then for significantly large
(1+9) > ;

my, « is large enough as needed in the Theorem we get

i=mp+1 &

| 1 @Y | 2(1 - ¢/2) 1
>, |—Inln S —
Z?:mk—&—l azz (1 T 7) Zi:mk-H a;

—2(1—-¢/2) 1 (1+7)

1

(kInf —In(1 — €2))'~
1

2(k1ng)l—3

Thus for a large k, we have

| [EE a0 - £ a0 ] (.
\/2 Zz mp+1 a; lnln% (1 +7) 2(k1n0)1_

i=mp+1 %

t:

>

£
2

>

(3.7)

[ 178

Moreover, we also have

(38) Z;imk—kl al? 2 Z;)omk-‘rl 7 (1 - 6 - 1/0)
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From (3.8)) and (3.7) we get,

’E?imgﬁ»l GZY;(t)

t:

oo

_Z_

i=m-+1

aiYi(0) (1-¢/2) 1

J(Smnata-e-y

One can easily show that

o0
1=mr+1

am(t)’

. (1+7) 2(kIng)l—3

>
Inln (Z?OM"+1 P > )

1 1+ -¢€)

1

|{t ‘Zz mk+1+1azYz(t)_Z

e

P a?Inln

=1

| Z’:i)imk-‘rl al}fl(t) -

-

(&2 (|,
T+ ) Q

)

2

|

N Yitmn el [(1-¢/2) (1 el 1)
, . (1+7) 0
221 my+1 Llnln( ’OkaJrl 12>
Using this, we get
doaYit) - > aYi(t)
Z ;e i=mpy1+1 i=mp+1 S (1—5/2) (1_62_ 1> _9 (1+f)(1—62)
P , . ] 14+7) 0 0
2 iZmy41 97 Inln (m)
>
- kz::l 2(kIng)l=5

Q.

Here each term, > °° a;Y;(t) —

1= mk+1+1

> 2, +1 @iYi(t) is an independent random variables.

Using Borel-Cantelli Lemma for a.e. t, we find m1 < mo < mg3 < --- such that
Z aiY;‘(t) — Z ai}/;(t)
P s i=my+1 S (1-¢/2) (162 1) Ly (14+&)(1—¢€?)
r ] (1+7) 0 0
221 me+1 a; 1n1n< 1°°mk+1 ?)
Using (3.4]) we get,
1+ -¢€) | 1 @ Yai(®)] (1-¢/2) 1 1+ -¢€)
2 Z a; Inln < = 2)
i=my+1 i=mp+1 %
This gives
> aYi(t)
i=my+1 - (1-¢/2) <1—e2—1) _3 (1 +€)(1—e2).
Z ( 1 ) (1+7) 6 0
a; 2Inln
a2
i=mp+1 Zz =mg+1 a;

Finally we let 8 " 00, € \, 0, £ \( 0, and v 0. This gives
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o0
> atit)
> 1
2
2 Z a; ln hl ﬁ
i=mp+1 i=mr+1 71
Consequently for almost every ¢, we have
oo
D> ai¥i(t)
lim sup =m > 1.
m—0o0

i=m i

1
2
QiEmal- Inln (ZOO a2>
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