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Abstract
There are abundant real world problems in this nature which are governed by differen-
tial equations. They are usually non-linear in nature and due to its high complexity,
obtaining the analytical solution is very hard or almost impossible. So, we widely use
the numerical techniques to approximate the solutions. Likewise, Transient Analysis
of an LCR electrical circuit is one of them. LCR circuit encompasses three different
elements i.e., Inductor (L), Capacitor (C) and Resistor (R). In this paper, we mainly dis-
cuss three major numerical techniques viz. Euler (Forward), fourth-order Runge-Kutta
(RK4) and sixth-order Runge-Kutta (RK6) methods to approximate the numerical so-
lutions of second-order differential equation of LCR circuit. Moreover, we compare
the numerical solutions with exact solutions with necessary visualization. Concerning
the various damping factor values, we discuss the damping conditions and consider the

further possibility of discussion and analysis of this numerical methods.

Keywords: LCR Circuit, Transient Analysis, Numerical Methods, Differential Equation,
Damping Factor.
AMS(MOS) Subject Classification: Subject classification here.

1 Introduction

Real world encompasses different real-physical phenomena. Many problems in different
areas like engineering, physics, medical science, space science etc. needs to be solved math-
ematically and there comes the actual use of mathematics [I], [6]. Many problems of math-

ematical physics like planetary motion, motion of simple pendulum clock, circuit analysis,
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motion under gravity, population dynamics, Newton’s law of cooling, heat equation, wave
equation etc. are governed in the form of differential equation [7]. The development of
diverse modeling in science and engineering heavily relies on the solution of differential
equations [6]. While encountering differential equations of these types in modeling, nearly
all seems to be non-linear. Ordinary differential equations can be solved analytically in a
variety of ways. However, in most real life situations, the differential equation that models
the problem is too complicated or almost impossible to solve the analytically [T}, [7]. Conse-
quently, in order to obtain some approximation to such challenging problems, a pragmatic

and rigorous method is required. One such way is the numerical techniques [5] [6] [§].

According to Otoo and Islam, transient energy bursts in an electrical circuit have the po-
tential to cause harm to specific circuit components [5] [7]. Typically, transient causes an
electrical circuit’s component states to change. It usually occurs during switching period.
It is frequently used for circuit analysis, energy efficiency, power quality, control system
design etc. There are many millions of components like inductors, resistors, capacitors etc.
embedded inside the integrated circuit and are most dangerous to this small increment of
current [16]. In an electrical circuit, it is exceedingly difficult for the inductor voltage and
the capacitor voltage to take on a new steady state value. Consequently, the evolution of the
capacitor and inductor voltage with time can be ascertained by transient analysis [I1]. The
analysis of a system in an unstable condition is known as transient analysis. Steady (equi-
librium) state of system is referred when the variables that define its state do not vary over
time. It is in an unstable state if not. Because it may be used to analyze the performance
of any electrical circuit, transient analysis is extremely important [13]. Thus, there can be
several forms of voltage and current for an electrical current or voltage passing through an
electrical circuit. For example, when looking at circuits that combine resistive circuits and
time-varying signals, the resulting Kirchhoff’s Voltage law (KVL) & Kirchhoff’s Current
law (KCL) resemble differential equations more than algebraic equations [5, [I5]. But due to
its high order and complexity, the analytical solution is not easy to solve. Also, for an LCR
circuit which is an electrical circuit consisting of inductor, capacitor and resistor which are
connected in either series or parallel combinations, the circuit equations are second-order
differential equations [5 [I5]. By differentiating with regard to time, we may transform these
equations into ordinary differential equations. As a result, one can approach the transient
analysis of an LCR circuit numerically [I1], 15]. The Runge-Kutta method’s effectiveness in

resolving second-order differential equations was emphasized by the author.

Suhag (2013) [I5], carried out a transient response of a second order LCR circuit and
recorded the system’s reaction when the conditions were changed from one steady state
value to next state. His conclusion was that the Runge-Kutta method seems to be very

efficient method in solving the differential equations which are of second order [15]. Kee
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and Ranom (2018) [I1], used the RK4 approach with different time step sizes h to study
the transient response of a LCR circuit of series connection for under damped, critically
damped, & over damped situations. Henry et al. (2018) [5], used two iteratives approxima-
tions i.e. Heun’s and Runge-Kutta methods to solve the transient analysis of LCR circuit.
They proved that the RK4 method converged exact solution faster than Heuns method.
Ogbuka (2008) [12], simulated a sample of complex electrical circuit in mathematical tools
with strong mathematical background and basic laws of circuit analysis to study transient
response. Despande (2014) [I1], found that the DC voltage applied in any LCR circuit
gives raise to transient response and estimation of voltage was of crucial for control pur-
pose. In their study, Hossain et al. (2017) [6], examined a numerical example of solving a
second-order IVP for an ODE utilizing the fourth and fifth-order RK methods. The IVP
for the fourth order Runge-Kutta method was solved by Ahamad and Charan (2019) using
the Runge-Kutta method of fifth order [I]. The modified Euler and Runge-Kutta approach
was employed by Kamruzzaman and Nath (2018) to compare the analytical and numerical
solution of an ODE using IVP [10]. Kafle et al. (2020) [8], experimented the BRK5 method
to analyze the different damping conditions of LCR circuit for both series and parallel. For
universal second-order differential equations, Fehlberg (1974) produced classical formula-

tions for the seventh, sixth, and fifth order Runge-Kutta-Nystrém with step-size control [4].

In this paper, series and parallel LCR circuit are taken with DC source and this can be
formulated by differential equation of second order. Due to complexity, at first we have
converted the second order ODE with IVP into system of first order differential equation
and solved numerically. All three numerical methods i.e., Euler (Forward), RK4 and RK6
methods are compared for solving the IVP of ODE. We note that the analytical solution of
the Euler technique converges to an abnormally tiny step size. Therefore, a lot of compu-
tation is required. The Runge-Kutta technique, on the other hand, produces better results,
converges to the analytical solution more quickly, and requires less iterations to provide
an accurate solution. It is found that RK6 method is the best among these methods as it
converges very faster toward exact solution with comparatively less error than compared to
other two methods. Due to its high accuracy, RK6 approximation is selected to study the
different damping characteristics of LCR circuit for both series and parallel circuit under

different conditions of resistors.

2 Mathematical Theory

A LCR circuit constitutes three elements i.e., Inductor (L), Capacitor (C) and Resistance
(R). The LCR circuit equation is governed by second order differential equation [12]. The
LCR circuit has several uses, but two of the most significant ones are as oscillators and

radio or audio receiver transformers [8]. A transient response complete solution is created
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by applying the circuit equations to analyze the circuit and develop analytical solutions for
transient analysis [11]. However, analytical solution of such LCR ciruits in complex network
is almost impossible to find or very difficult to solve. Therefore, numerical methods offer
the best solution technique to the system [5]. Here, we solve the circuit equation in an LCR
circuit using all feasible iterative strategies while comparing the various approaches. Figure
is for series combination and Fig. [2]is for parallel combination of LCR circuit. We use
the Kirchhoff’s Voltage Law for ¢ > 0 in Fig.
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Figure 1: Series LCR Circuit [18§]. Figure 2: Parallel LCR Circuit [19].

Here, the total voltage dropped along the series LCR circuit is given as [15]:

Ve=Vp+ VL + Ve (2.1)

where, Vg is the DC source voltage and Vg, Vi and Vg are voltage across resistor, induc-
tor and capacitor respectively. The LCR circuit’s second order differential equation with

constant coefficients is given as [14]:

2V av 1. V.
L vV =_5 2.2
a g tdV e (2.2)

Once we close the switch, we analyze the transient characteristic in this series LCR circuit.
Various iterative techniques can be employed to solve equation . The amount by which
a system’s oscillation gradually reduces with time (¢) is known as the damping factor (u).
The damping factor’s () value determines the transient response. The damping factor in

an LCR circuit is provided by [5].

a
= — 2.3
= (2.3)
where, a = % (damping coefficient) & w, = \/% (natural oscillation). Then, the equation

(2.3)) becomes
R /C
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Different values of p describes the nature of oscillation of the system. The given system is
(¢) critically damped when p = 1, (i7) under damped when p < 1, & (4i7) over damped in

all other cases [15].

Again, in Fig. [2] for the loop for ¢ > 0, we apply the Kirchhoff’s Current Law [I1]. The

total current flowing through this circuit is given as [15]:
Is=1I;+ Ic+ IR (2.5)

where, source current is denoted by Ig, and the currents via the resistor, inductor, and
capacitor are denoted by Igr, I, and I, respectively. Based on the loop current approach,
differential equation of the LCR circuit in Fig. [2|is as follows:

1 1 av
Iy A 2.
RV+L/th+Cdt s (2.6)

Differentiating equation ([2.6) on both sides, we obtain differential equation of second order

for LCR circuit with constant coefficients and is given as [14].

d>Vv 1 dv 1
a2 Troa teV =0 (2.7)

. . av (0
with V(0) = 6, i(0) = 0, and 20 — _12,

After the switch is closed, the transient characteristics of the parallel LCR circuit are
examined. Iterative techniques can be employed to solve equation . The amount by
which a system’s oscillation gradually reduces with time (¢) is known as the damping factor
(§). The damping factor (&) [5] determines the transient response. The damping factor in
an LCR circuit is provided by:

£= (2.8)

a
wo
where, a = 53~ (damping coefficient) & w, = \/%70 (natural oscillation). Then, the equation

(2.8) becomes
1 /L
=—1/= 2.9
=5m\ @ (2.9)
According to Suhag, the system is referred to as (i) critically damped when £ = 1, (ii) under

damped when ¢ < 1, & (iii) excessively damped when & > 1 [I5].

3 Numerical Methodologies

This section discusses various numerical techniques for solving ordinary differential equa-
tions (ODEs) of an initial value problem (IVP). First, we provide the explicit Euler tech-
nique. Next, we present the fourth order Runge-Kutta method (RK4) and the sixth order
Runge-Kutta method (RK6) respectively [3], [1].
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3.1 Euler’s (Forward) Method

The most basic one-step method is Euler’s method and in 1768, he approached his method
for initial value problems (IVP). The solutions to explicit first-order equations can be ap-
proximated using this numerical method [2]. It is predicated on progressively approximat-
ing the solution through linear processes. Examine the following starting value issue for a

smooth function:
y'(t) = fty(), ylto) =yo (3.1)
With a step size of h, let ¥y, represent the position at time ¢,. According to the meaning of

derivative, we get
dy _ . y(t+h) —y(t)

at o h
dy y(t+h) —y(t)
dt h

Let (tn,yn) be the slope, then
Yn+1 = Yn _ dy
= — = [(tn,Yn)-
h g = (tn )
which implies
Yn+1 = Yn + hf(tn, yn) (3'2)
Equation (3.2)) is called Euler’s (Forward) or Explicit method [10].

3.2 Runge-Kutta Methods

The Runge-Kutta family of explicit and implicit iterative techniques includes the widely
recognized Euler method, which is applied in temporal discretization to approximate ODE
solutions. Carl Runge and Martin Kutta, two German mathematicians, created these tech-
niques in 1900. The Runge-Kutta method is the most often used because it is simple to
program and has high accuracy and is more stable [7]. This method can be identified by its
order, which agrees with Taylor’s series solution up to terms of h", where r is the method’s
order. Here, we will discuss two extensively used Runge-Kutta methods of order fourth and
sixth i.e., RK4 & RK6 respectively.

3.2.1 Fourth Order Runge-Kutta Method

The fourth order Runge-Kutta method [3] is given as follows:

ki ke ks ka
il = Un +h[— + — + = 4 = )
Yn+1 y+[6+3+3+6] (3.3)

where,
kl = f(tnayn)7 k? = f(tn + %7yn + %k1)7 k3 = f(tn + %7yn + %k2)7 k4 = f(tn =+ hayn + h’kB)
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3.2.2 Sixth Order Runge-Kutta Method
The sixth order Runge-Kutta method formula [3] is given as:

Yn+1 = Yn + %[7/{1 + 32kz + 12ky + 32ks + Tke] (3.4)
where,

ki = hf(tn,yn), ko = hf(tn + % un + ), k3 = hf(tn + 5, yn + B582),
ka=hf(tn+ % un + 5 +22), ks = hf(tn + 5 yn + B — 353 4+ 2ky),
ko = hf(tn + 3,y — 5 4+ 552 4 55) o = Rf(ty + by + 8 + 2 12 12k g gy

For the solution of higher order problems for ordinary differential equations, we can expand

on the previously stated iterative [6].

4 Numerical Formulation of LCR Circuit

Here, we will convert the second order differential equation of LCR circuit into the sys-
tem of differential equation of first order for both series and parallel circuit and formulate

numerically.

4.1 For Series circuit

vy
Let us suppose, V =z and prialre (4.1)
then, we can write equation as
dy Vs—z—Rxy
dt L
Thus, equations and give the system of differential equation which is of first
order [5]. And, we let

(4.2)

fe WY g g W _Vsma Ry
Tat MY T T L '
4.2 For Parallel Circuit
av Y
We let, V = d — == 4.3
e let, z and —- =5 (4.3)

then, we can write equation (2.7)) as

y Vs y = (4.4)

Hence, equations (4.3) and (4.4)) give the system of differential equation which is of first
order [5].
Let,

_dav oy dav. Vs Y x

f=w=c ™ I= 5w =Ic Re L
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4.3 Numerical Methods

Here, we apply three major numerical techniques i.e., Euler’s, RK4 and RK6 methods to

compute the approximate solution for both LCR circuits.

4.3.1 Euler’s (Forward) Method for LCR Circuit

Tit1 = x; + hf(ti, i, yi), Yit1r = yi + hg(ti, i, vi)

where i = 0,1,2,3,....,n and h is step-size.

4.3.2 RK4 method for LCR Circuit

fii fo f3 fa g1 g2 g3 G4
it1 =z +hl—+ T+ =+ =], v =y th+ T+
Tig1 x+[6+3+3+6] Yit1 y+h[6+3+3+6]
where,
f1=f(ti,zi,95), 91 = g(ti, x5, 9i),
h h h h h h
f2—f(tz'+57($i+§f1),(yz’+§g1))7 92—g(t¢+5,($i+§f1),(?ﬁ+591)),
h h h h h h
f3=f(t; + 5 (w; + §f2)a (yi + 592)), g3 = g(t; + 5 (@ + §f2)7 (yi + 592)),

Ja= f(ti +h,(x; + hf3), (yi + hg3)), ga = g(ti + h, (z; + hf3), (yi + hg3)).

4.3.3 RK6 method for LCR Circuit

h h
Tip1 = T; + %[Ul +32f3 +12f4 +32f5s + Tfs], yiv1 =y + %[791 + 32g3 + 1294 + 3295 + 7gs]
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where,
f1=nhf(ti, i, v:), g1 = hg(ti, i, y:),
B L £ R RN P RN 5 RO |
f2—hf(tz+3a($z+ 3>a(yz+ 3))7 92—h9(tz+37(x2+ 3)7(yz+ 3))a
h + + h + +
fom b+ 2 s+ ) g 0 hg(a o B 2 (g 02
3 6 6 3 6 6
h fi  3f3 g1 393 h fi  3f3 g1 393
=h tl PR o o )\ o - /) =h t’b PERCT o — /) \Yi e 5 /)
fa f(+2(95+8+8)(y+8+8)) g4 g(+2($+8+8)(y+8+8))
2h 3 3
fo = hfti+ 2 i =3 op (g B3 gy,
3 2 2 2 2
_ 2 h 3 .91 393
95—hg(tz+ 3 7(xl+ 2 2 +2f4)7(y2+ 9 2 +2g4))7
_  bh 1 Bfs fs\ g1 Dg3 g5
fﬁ—hf(tz+6,(acz 5 T +2)7(y2 5+t 5 +2)),
5h Ji 5fs fs g1 593 g5
:h t’L — A a - /) T o o a /)
g6 g(+6(w 5 T T 5T 5 t3)
_ , N 2f 12fy 12f5 L1 293 1294 12g5
fr=hfti+h (i 2+ ==+ — - fe) (it T - +9)),
_ , N 2f3 [ 12f 12f5 L 91, 293 1294 12g5
g1 =hy(ti +h, (@i + o + ==+ — = o) (it T+ = = +9))-

5 Results and Discussion

The numerical solution of LCR circuits using the various iterative techniques discussed
above is compared to the analytical solution in the ensuing subsection. Also, we analyze
the different characteristics of damping factor for the both series and parallel LCR circuit
by using the best efficient numerical method which is sixth order Runge Kutta method

(RK6).

5.1 Comparison of numerical and analytical solutions

In the given subsection, we simulate the numerical solution for series and parallel circuits
respectively for under damped conditions with their analytical solution and comparison is

done by calculating the absolute error at specific time period.

5.1.1 For Series LCR Circuit

The simulation time in this experiment is from 0 s to 20 s for all situations taking a step
size of h = 0.1s. Likewise, let direct source voltage (V's) = 6V, Resistance (R) = 1 ohm ,

Inductane (I) = 1H & Capacitance (C) = 0.25F to obtain the simulation result of LCR

circuit [5].
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Figure 3: Comparison of Euler, RK4, RK6 and Exact solution for series circuit.

Table 1: Results from simulations using numerical techniques & analytical solution with an

absolute error.

Time (sec) Euler RK4 RK6 Exact
Voltage Error Voltage Error Voltage Error Voltage

0.0 sec 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000

0.1 sec 0.000000 | 0.114378 | 0.011960 | 0.102418 | 0.168186 | 0.053808 | 0.114378

0.2 sec 0.240000 | 0.203654 | 0.261484 | 0.182170 | 0.533736 | 0.090082 | 0.443654

0.3 sec 0.696000 | 0.256189 | 0.723512 | 0.228677 | 1.061245 | 0.109056 | 0.952189

0.4 sec 1.336800 | 0.275764 | 1.366120 | 0.246444 | 1.713234 | 0.100670 | 1.612564

0.5 sec 1.336800 | 1.029671 | 2.152233 | 0.214238 | 2.451763 | 0.085292 | 2.366471

0.6 sec 2.125680 | 1.064150 | 3.041423 | 0.148407 | 3.239892 | 0.050062 | 3.189830

0.7 sec 3.022200 | 0.982692 | 3.991735 | 0.013157 | 4.042936 | 0.038044 | 4.004892

0.8 sec 4.968810 | 0.084868 | 4.961454 | 0.077512 | 4.829500 | 0.054442 | 4.883942

0.9 sec 5.935740 | 0.243419 | 5.910749 | 0.218428 | 5.572277 | 0.120044 | 5.692321

1.0 sec 6.847225 | 0.422573 | 6.803138 | 0.378486 | 6.248608 | 0.176044 | 6.424652

The simulation results of the iterative solution of the LCR circuit with the exact solution
under the previously stated conditions is shown in Fig. [3] The computed points of three
numerical methods i.e., Euler, RK4 & RK6 are taken at specific point for the comparison
of accuracy of the numerical methods and is given by Tab. Likewise, the oscillation is
more for Euler method than RK4, RK6 and exact methods. We see that error between
oscillation of Euler and RK4 is comparatively less than each other but is more than RK6
and exact solutions. The oscillation decreases slowly after the increment of time and at

infinite time all solution converges uniformly.
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5.1.2 For Parallel LCR Circuit

The simulation time in this experiment is from 0 s to 20 s for all situations taking a step

size of h = 0.1s. Likewise, let direct source voltage (V's) = 6V, Resistance (R) = 2 ohm ,
Inductane (I) = 1H & Capacitance (C) = 0.25F to obtain the simulation result of LCR

circuit [5].

Figure 4: Comparison of Euler, RK4, RK6 and Exact solution for parallel circuit.

10
Time(s)

20

Table 2: Results from simulations using numerical techniques & analytical solution with an

absolute error.

Time (sec) Euler RK4 RK6 Exact
Voltage Error Voltage Error Voltage Error Voltage
0.0 sec 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000
0.1 sec 0.000000 | 0.737550 | 0.047680 | 0.689870 | 0.644902 | 0.092468 | 0.737550
0.2 sec 0.960000 | 1.221952 | 1.036162 | 1.145790 | 1.972012 | 0.2098860 | 2.181952
0.3 sec 2.68800 | 1.464886 | 2.773533 | 1.379353 | 3.806136 0.34675 | 4.152886
0.4 sec 4.992000 | 1.491691 | 5.069390 | 1.414301 | 5.987573 | 0.496118 | 6.483691
0.5 sec 7.687680 | 1.337233 | 7.742125 | 1.282788 | 8.375207 | 0.649706 | 9.024913
0.6 sec 10.304544 | 1.042045 | 10.624699 | 1.021890 | 10.847579 | 0.799010 | 11.646589
0.7 sec 13.590528 | 0.648876 | 13.568884 | 0.670510 | 13.303391 | 0.936013 | 14.239404
0.8 sec 16.515133 | 0.199770 | 16.448082 | 0.266821 | 16.261162 | 0.513741 | 16.714903
0.9 sec 19.271197 | 0.266292 | 19.158826 | 0.153921 | 19.411536 | 0.406631 | 19.004905
1.0 sec 21.775442 | 0.715153 | 21..621120 | 0.560831 | 21.466798 | 0.406569 | 21.060289

23




The Nepali Math. Sc. Report Year: 2025, Volume: 42, No: 1

Likewise, we see that the oscillation is comparatively less in parallel circuit than the se-
ries circuit and this means it is damped quickly. In this circuit, we found that Euler method
gives high oscillation than other methods but the error is more than RK4, RK6 and exact
solutions. Damping increases with increment of time and as time increases infinitely all

oscillations are damped and all solution converge uniformly.

Hence, when compared to the other numerical techniques i.e., Euler and RK4, the numerical
approximation solution curve computed by the Runge-Kutta method of sixth order (RK6)
is approaching quicker towards the analytical solution. Errors have been calculated indi-
vidually at each time second and this shows that the relative error between the analytical
solution and RK6 solution is comparatively less than other two methods. Thus, we deduce

that the RK6 approach is the most effective way to estimate the solution of the LCR circuit.

5.2 Damping Conditions

In an LCR circuit, damping is the term used to describe how a resistive component gradually
reduces oscillations or vibrations in the circuit. It is the process that eventually results in

a steady state by gradually reducing the oscillation’s amplitude.

5.2.1 In Series Circuit

RK6 approach is used in this circuit to visualize all three damping scenarios (i.e., under
damped, critically damped and over damped). Table [3|gives the values of electrical elements
i.e., source voltage, resistance, inductor and capacitor for different damping condition.
Additionally, results are simulated under the previously described conditions with various
time-specific points in Fig. ol Table[4] gives the values of three damping conditions by using

RK6 method for series circuit.

Element Damping Value
Cond. 1 Cond. 2 Cond. 3
Resistor Under- Critically- Over-
Damped Damped Damped
Voltage 6 Volt 6 Volt 6 Volt
Resistance < 40 4Q > 4€)
Inductor 1 Henry 1 Henry 1 Henry
Capacitor | 0.25 Farad | 0.25 Farad | 0.25 Farad
Table 3: Electrical elements values for three distinct damping circumstances in a series
[11].
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Figure 5: Comparison of all three different damping conditions by applying RK6 series.

Table 4: All damping features of RK6 and their respective values for series.

Time (sec) Different Value of RK6 Method
Under-Damped | Critically-Damped | Over-Damped
0.0 sec 0.000000 0.000000 0.000000
0.1 sec 0.164656 0.148423 0.136930
0.2 sec 0.512743 0.425057 0.371173
0.3 sec 1.063963 0.781100 0.650941
0.4 sec 1.599025 1.180798 0.965764
0.5 sec 2.260901 1.598392 1.280176
0.6 sec 2.955797 2.015728 1.589688
0.7 sec 3.653875 2.420398 1.888212
0.8 sec 4.329716 2.804294 2.172432
0.9 sec 4.962558 3.162494 2.440755
1.0 sec 5.536324 3.492399 2.692653

5.2.2 In Parallel Circuit

Again, all three damping scenarios (i.e., Under damped, critically damped & over damped)
visualized by RK6 method. Table [5| gives the values of all electrical elements like resistor,
source voltage, inductor and capacitor for different damping condition. Also, results are
simulated under the previously described conditions with various time-specific points in Fig.
[6l Table [6] gives the values of three damping conditions by using RK6 method for parallel

circuit.
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Element Damping Values
Cond. 1 Cond. 2 Cond. 3
Resistor Under- Critically- Over-
Damped Damped Damped
Voltage 6 Volt 6 Volt 6 Volt
Resistance > 10 1Q < 19
Inductor 1 Henry 1 Henry 1 Henry
Capacitor | 0.25 Farad | 0.25 Farad | 0.25 Farad

Table 5: Electrical elements values for three distinct damping circumstances in a parallel
[11].

30
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__ 20}
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% 15}
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o 5 10 15 20

Time (s)

Figure 6: Comparison of all three different damping conditions by applying RK6 parallel.

Table 6: All damping features of RK6 and their respective values for parallel.

Time (sec) Different Value of RK6 Method
Under-Damped | Critically-Damped | Over-Damped
0.0 sec 0.000000 0.000000 0.000000
0.1 sec 0.644902 0.593693 0.506146
0.2 sec 1.972027 1.700228 1.311301
0.3 sec 3.806136 3.124398 2.255384
0.4 sec 5.987573 4.723191 3.250947
0.5 sec 8.375207 6.393567 4.250781
0.6 sec 10.847579 8.062911 5.229934
0.7 sec 13.303391 9.681590 6.175750
0.8 sec 15.661162 11.217177 7.082329
0.9 sec 17.858274 12.649976 7.947467
1.0 sec 19.849543 13.969596 8.770952
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6 Conclusions

In this study, we analyzed the transient analysis of both series and parallel LCR circuits by
applying the analytical, Euler (Forward), RK4 and RK6 methods. Computational software
is dominantly used for obtaining the transient analysis systematically and conveniently.
Due to circuit complexity, obtaining analytical solution is very difficult so our experiment
suggests and shows that the numerical approximation is suitable for transient analysis. At
first, we modeled the second order differential equations into system of first order differential
equation and solved them using different numerical approximations. It has been found that
the for under damped condition for series and parallel LCR circuits both, RK6 method is
very efficient method due to less error than other two methods i.e., Euler (Forward) and
RK4. We also found that the oscillation behaves differently for series and parallel circuit. If
we see Fig. [3|and Fig. 4l the damping is faster in parallel circuit for all numerical and exact
solution than series circuit. Likewise, we also experimented the three damping character-
istics for both series and parallel circuits by using RK6 method by taking different values
resistance and found that oscillation gradually decreases with increase of time in different
nature. The oscillation is high for under damped condition and reduces gradually for crit-
ically and over damped respectively in both circuits. It also shows that the oscillation for
series circuit for under damped condition is more than parallel circuit. Difference between
critically and over damped conditions is comparatively less in series circuit than parallel
circuit. As time increases infinitely, all three damping conditions converges uniformly in
both series and parallel LCR circuit. Our experiment clearly shows that the under damped
decay for both circuits are oscillatory and exponential in nature. This response aids us to
build a system that satisfies our needs, and we can additionally improve the time domain
settings of the system. Thus, we deduce that by varying the conditions from one steady
value to next while conducting a system’s transient analysis, we can determine the system’s
response accurately. Hence, to obtain the more accuracy, we prefer using high order nu-
merical methods.
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