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Abstract

There are abundant real world problems in this nature which are governed by differen-

tial equations. They are usually non-linear in nature and due to its high complexity,

obtaining the analytical solution is very hard or almost impossible. So, we widely use

the numerical techniques to approximate the solutions. Likewise, Transient Analysis

of an LCR electrical circuit is one of them. LCR circuit encompasses three different

elements i.e., Inductor (L), Capacitor (C) and Resistor (R). In this paper, we mainly dis-

cuss three major numerical techniques viz. Euler (Forward), fourth-order Runge-Kutta

(RK4) and sixth-order Runge-Kutta (RK6) methods to approximate the numerical so-

lutions of second-order differential equation of LCR circuit. Moreover, we compare

the numerical solutions with exact solutions with necessary visualization. Concerning

the various damping factor values, we discuss the damping conditions and consider the

further possibility of discussion and analysis of this numerical methods.

Keywords: LCR Circuit, Transient Analysis, Numerical Methods, Differential Equation,

Damping Factor.

AMS(MOS) Subject Classification: Subject classification here.

1 Introduction

Real world encompasses different real-physical phenomena. Many problems in different

areas like engineering, physics, medical science, space science etc. needs to be solved math-

ematically and there comes the actual use of mathematics [1, 6]. Many problems of math-

ematical physics like planetary motion, motion of simple pendulum clock, circuit analysis,
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motion under gravity, population dynamics, Newton’s law of cooling, heat equation, wave

equation etc. are governed in the form of differential equation [7]. The development of

diverse modeling in science and engineering heavily relies on the solution of differential

equations [6]. While encountering differential equations of these types in modeling, nearly

all seems to be non-linear. Ordinary differential equations can be solved analytically in a

variety of ways. However, in most real life situations, the differential equation that models

the problem is too complicated or almost impossible to solve the analytically [1, 7]. Conse-

quently, in order to obtain some approximation to such challenging problems, a pragmatic

and rigorous method is required. One such way is the numerical techniques [5, 6, 8].

According to Otoo and Islam, transient energy bursts in an electrical circuit have the po-

tential to cause harm to specific circuit components [5, 7]. Typically, transient causes an

electrical circuit’s component states to change. It usually occurs during switching period.

It is frequently used for circuit analysis, energy efficiency, power quality, control system

design etc. There are many millions of components like inductors, resistors, capacitors etc.

embedded inside the integrated circuit and are most dangerous to this small increment of

current [16]. In an electrical circuit, it is exceedingly difficult for the inductor voltage and

the capacitor voltage to take on a new steady state value. Consequently, the evolution of the

capacitor and inductor voltage with time can be ascertained by transient analysis [11]. The

analysis of a system in an unstable condition is known as transient analysis. Steady (equi-

librium) state of system is referred when the variables that define its state do not vary over

time. It is in an unstable state if not. Because it may be used to analyze the performance

of any electrical circuit, transient analysis is extremely important [13]. Thus, there can be

several forms of voltage and current for an electrical current or voltage passing through an

electrical circuit. For example, when looking at circuits that combine resistive circuits and

time-varying signals, the resulting Kirchhoff’s Voltage law (KVL) & Kirchhoff’s Current

law (KCL) resemble differential equations more than algebraic equations [5, 15]. But due to

its high order and complexity, the analytical solution is not easy to solve. Also, for an LCR

circuit which is an electrical circuit consisting of inductor, capacitor and resistor which are

connected in either series or parallel combinations, the circuit equations are second-order

differential equations [5, 15]. By differentiating with regard to time, we may transform these

equations into ordinary differential equations. As a result, one can approach the transient

analysis of an LCR circuit numerically [11, 15]. The Runge-Kutta method’s effectiveness in

resolving second-order differential equations was emphasized by the author.

Suhag (2013) [15], carried out a transient response of a second order LCR circuit and

recorded the system’s reaction when the conditions were changed from one steady state

value to next state. His conclusion was that the Runge-Kutta method seems to be very

efficient method in solving the differential equations which are of second order [15]. Kee
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and Ranom (2018) [11], used the RK4 approach with different time step sizes h to study

the transient response of a LCR circuit of series connection for under damped, critically

damped, & over damped situations. Henry et al. (2018) [5], used two iteratives approxima-

tions i.e. Heun’s and Runge-Kutta methods to solve the transient analysis of LCR circuit.

They proved that the RK4 method converged exact solution faster than Heuns method.

Ogbuka (2008) [12], simulated a sample of complex electrical circuit in mathematical tools

with strong mathematical background and basic laws of circuit analysis to study transient

response. Despande (2014) [11], found that the DC voltage applied in any LCR circuit

gives raise to transient response and estimation of voltage was of crucial for control pur-

pose. In their study, Hossain et al. (2017) [6], examined a numerical example of solving a

second-order IVP for an ODE utilizing the fourth and fifth-order RK methods. The IVP

for the fourth order Runge-Kutta method was solved by Ahamad and Charan (2019) using

the Runge-Kutta method of fifth order [1]. The modified Euler and Runge-Kutta approach

was employed by Kamruzzaman and Nath (2018) to compare the analytical and numerical

solution of an ODE using IVP [10]. Kafle et al. (2020) [8], experimented the BRK5 method

to analyze the different damping conditions of LCR circuit for both series and parallel. For

universal second-order differential equations, Fehlberg (1974) produced classical formula-

tions for the seventh, sixth, and fifth order Runge-Kutta-Nystróm with step-size control [4].

In this paper, series and parallel LCR circuit are taken with DC source and this can be

formulated by differential equation of second order. Due to complexity, at first we have

converted the second order ODE with IVP into system of first order differential equation

and solved numerically. All three numerical methods i.e., Euler (Forward), RK4 and RK6

methods are compared for solving the IVP of ODE. We note that the analytical solution of

the Euler technique converges to an abnormally tiny step size. Therefore, a lot of compu-

tation is required. The Runge-Kutta technique, on the other hand, produces better results,

converges to the analytical solution more quickly, and requires less iterations to provide

an accurate solution. It is found that RK6 method is the best among these methods as it

converges very faster toward exact solution with comparatively less error than compared to

other two methods. Due to its high accuracy, RK6 approximation is selected to study the

different damping characteristics of LCR circuit for both series and parallel circuit under

different conditions of resistors.

2 Mathematical Theory

A LCR circuit constitutes three elements i.e., Inductor (L), Capacitor (C) and Resistance

(R). The LCR circuit equation is governed by second order differential equation [12]. The

LCR circuit has several uses, but two of the most significant ones are as oscillators and

radio or audio receiver transformers [8]. A transient response complete solution is created
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by applying the circuit equations to analyze the circuit and develop analytical solutions for

transient analysis [11]. However, analytical solution of such LCR ciruits in complex network

is almost impossible to find or very difficult to solve. Therefore, numerical methods offer

the best solution technique to the system [5]. Here, we solve the circuit equation in an LCR

circuit using all feasible iterative strategies while comparing the various approaches. Figure

1 is for series combination and Fig. 2 is for parallel combination of LCR circuit. We use

the Kirchhoff’s Voltage Law for t > 0 in Fig. 1.

Figure 1: Series LCR Circuit [18]. Figure 2: Parallel LCR Circuit [19].

Here, the total voltage dropped along the series LCR circuit is given as [15]:

VS = VR + VL + VC (2.1)

where, VS is the DC source voltage and VR, VL and VS are voltage across resistor, induc-

tor and capacitor respectively. The LCR circuit’s second order differential equation with

constant coefficients is given as [14]:

L
d2V

dt2
+R

dV

dt
+

1

C
V =

Vs
C

(2.2)

Once we close the switch, we analyze the transient characteristic in this series LCR circuit.

Various iterative techniques can be employed to solve equation (2.2). The amount by which

a system’s oscillation gradually reduces with time (t) is known as the damping factor (µ).

The damping factor’s (µ) value determines the transient response. The damping factor in

an LCR circuit is provided by [5].

µ =
α

ω0
(2.3)

where, α = R
2L (damping coefficient) & ωo = 1√

LC
(natural oscillation). Then, the equation

(2.3) becomes

µ =
R

2

√
C

L
(2.4)
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Different values of µ describes the nature of oscillation of the system. The given system is

(i) critically damped when µ = 1, (ii) under damped when µ < 1, & (iii) over damped in

all other cases [15].

Again, in Fig. 2 for the loop for t > 0, we apply the Kirchhoff’s Current Law [11]. The

total current flowing through this circuit is given as [15]:

IS = IL + IC + IR (2.5)

where, source current is denoted by IS , and the currents via the resistor, inductor, and

capacitor are denoted by IR, IL, and IC , respectively. Based on the loop current approach,

differential equation of the LCR circuit in Fig. 2 is as follows:

1

R
V +

1

L

∫
V dt+ C

dV

dt
= IS (2.6)

Differentiating equation (2.6) on both sides, we obtain differential equation of second order

for LCR circuit with constant coefficients and is given as [14].

d2V

dt2
+

1

RC

dV

dt
+

1

LC
V = 0 (2.7)

with V (0) = 6, i(0) = 0, and dV (0)
dt = −12.

After the switch is closed, the transient characteristics of the parallel LCR circuit are

examined. Iterative techniques can be employed to solve equation (2.7). The amount by

which a system’s oscillation gradually reduces with time (t) is known as the damping factor

(ξ). The damping factor (ξ) [5] determines the transient response. The damping factor in

an LCR circuit is provided by:

ξ =
α

ω0
(2.8)

where, α = 1
2RC (damping coefficient) & ωo = 1√

LC
(natural oscillation). Then, the equation

(2.8) becomes

ξ =
1

2R

√
L

C
(2.9)

According to Suhag, the system is referred to as (i) critically damped when ξ = 1, (ii) under

damped when ξ < 1, & (iii) excessively damped when ξ > 1 [15].

3 Numerical Methodologies

This section discusses various numerical techniques for solving ordinary differential equa-

tions (ODEs) of an initial value problem (IVP). First, we provide the explicit Euler tech-

nique. Next, we present the fourth order Runge-Kutta method (RK4) and the sixth order

Runge-Kutta method (RK6) respectively [3, 11].
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3.1 Euler’s (Forward) Method

The most basic one-step method is Euler’s method and in 1768, he approached his method

for initial value problems (IVP). The solutions to explicit first-order equations can be ap-

proximated using this numerical method [2]. It is predicated on progressively approximat-

ing the solution through linear processes. Examine the following starting value issue for a

smooth function:

y′(t) = f(t, y(t)), y(t0) = y0 (3.1)

With a step size of h, let yn represent the position at time tn. According to the meaning of

derivative, we get
dy

dt
= lim

h→0

y(t+ h) − y(t)

h

dy

dt
≈ y(t+ h) − y(t)

h

Let (tn, yn) be the slope, then

yn+1 − yn
h

≈ dy

dt
= f(tn, yn).

which implies

yn+1 = yn + hf(tn, yn) (3.2)

Equation (3.2) is called Euler’s (Forward) or Explicit method [10].

3.2 Runge-Kutta Methods

The Runge-Kutta family of explicit and implicit iterative techniques includes the widely

recognized Euler method, which is applied in temporal discretization to approximate ODE

solutions. Carl Runge and Martin Kutta, two German mathematicians, created these tech-

niques in 1900. The Runge-Kutta method is the most often used because it is simple to

program and has high accuracy and is more stable [7]. This method can be identified by its

order, which agrees with Taylor’s series solution up to terms of hr, where r is the method’s

order. Here, we will discuss two extensively used Runge-Kutta methods of order fourth and

sixth i.e., RK4 & RK6 respectively.

3.2.1 Fourth Order Runge-Kutta Method

The fourth order Runge-Kutta method [3] is given as follows:

yn+1 = yn + h[
k1
6

+
k2
3

+
k3
3

+
k4
6

] (3.3)

where,

k1 = f(tn, yn), k2 = f(tn + h
2 , yn + h

2k1), k3 = f(tn + h
2 , yn + h

2k2), k4 = f(tn + h, yn + hk3)

18



J. Kafle, M. K.C., and I.B. Bhandari Numerical Approximations Techniques For....

3.2.2 Sixth Order Runge-Kutta Method

The sixth order Runge-Kutta method formula [3] is given as:

yn+1 = yn +
h

90
[7k1 + 32k3 + 12k4 + 32k5 + 7k6] (3.4)

where,

k1 = hf(tn, yn), k2 = hf(tn + h
3 , yn + k1

3 ), k3 = hf(tn + h
3 , yn + k1+k2

6 ),

k4 = hf(tn + h
2 , yn + k1

8 + 3k3
8 ), k5 = hf(tn + 2h

3 , yn + k1
2 − 3k3

2 + 2k4),

k6 = hf(tn + 5h
6 , yn − k1

2 + 5k3
2 + k5

2 ), k7 = hf(tn + h, yn + k1
7 + 2k3

7 + 12k4
7 − 12k5

7 + k6),

For the solution of higher order problems for ordinary differential equations, we can expand

on the previously stated iterative [6].

4 Numerical Formulation of LCR Circuit

Here, we will convert the second order differential equation of LCR circuit into the sys-

tem of differential equation of first order for both series and parallel circuit and formulate

numerically.

4.1 For Series circuit

Let us suppose, V = x and
dV

dt
=
y

C
(4.1)

then, we can write equation (2.2) as

dy

dt
=
Vs − x−R ∗ y

L
(4.2)

Thus, equations (4.1) and (4.2) give the system of differential equation which is of first

order [5]. And, we let

f =
dV

dt
=
y

C
and g =

dy

dt
=
Vs − x−R ∗ y

L
.

4.2 For Parallel Circuit

We let, V = x and
dV

dt
=
y

C
(4.3)

then, we can write equation (2.7) as

dy

dt
=

Vs
LC

− y

RC
− x

L
(4.4)

Hence, equations (4.3) and (4.4) give the system of differential equation which is of first

order [5].

Let,

f =
dV

dt
=
y

C
and g =

dV

dt
=
V s

LC
− y

RC
− x

L
.
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4.3 Numerical Methods

Here, we apply three major numerical techniques i.e., Euler’s, RK4 and RK6 methods to

compute the approximate solution for both LCR circuits.

4.3.1 Euler’s (Forward) Method for LCR Circuit

xi+1 = xi + hf(ti, xi, yi), yi+1 = yi + hg(ti, xi, yi)

where i = 0, 1, 2, 3, ...., n and h is step-size.

4.3.2 RK4 method for LCR Circuit

xi+1 = xi + h[
f1
6

+
f2
3

+
f3
3

+
f4
6

], yi+1 = yi + h[
g1
6

+
g2
3

+
g3
3

+
g4
6

]

where,

f1 = f(ti, xi, yi), g1 = g(ti, xi, yi),

f2 = f(ti +
h

2
, (xi +

h

2
f1), (yi +

h

2
g1)), g2 = g(ti +

h

2
, (xi +

h

2
f1), (yi +

h

2
g1)),

f3 = f(ti +
h

2
, (xi +

h

2
f2), (yi +

h

2
g2)), g3 = g(ti +

h

2
, (xi +

h

2
f2), (yi +

h

2
g2)),

f4 = f(ti + h, (xi + hf3), (yi + hg3)), g4 = g(ti + h, (xi + hf3), (yi + hg3)).

4.3.3 RK6 method for LCR Circuit

xi+1 = xi +
h

90
[7f1 + 32f3 + 12f4 + 32f5 + 7f6], yi+1 = yi +

h

90
[7g1 + 32g3 + 12g4 + 32g5 + 7g6]

20
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where,

f1 = hf(ti, xi, yi), g1 = hg(ti, xi, yi),

f2 = hf(ti +
h

3
, (xi +

f1
3

), (yi +
g1
3

)), g2 = hg(ti +
h

3
, (xi +

f1
3

), (yi +
g1
3

)),

f3 = hf(ti +
h

3
, (xi +

f1 + f2
6

), (yi +
g1 + g2

6
)), g3 = hg(ti +

h

3
, (xi +

f1 + f2
6

), (yi +
g1 + g2

6
)),

f4 = hf(ti +
h

2
, (xi +

f1
8

+
3f3
8

), (yi +
g1
8

+
3g3
8

)), g4 = hg(ti +
h

2
, (xi +

f1
8

+
3f3
8

), (yi +
g1
8

+
3g3
8

)),

f5 = hf(ti +
2h

3
, (xi +

f1
2

− 3f3
2

+ 2f4), (yi +
g1
2

− 3g3
2

+ 2g4)),

g5 = hg(ti +
2h

3
, (xi +

f1
2

− 3f3
2

+ 2f4), (yi +
g1
2

− 3g3
2

+ 2g4)),

f6 = hf(ti +
5h

6
, (xi −

f1
2

+
5f3
2

+
f5
2

), (yi −
g1
2

+
5g3
2

+
g5
2

)),

g6 = hg(ti +
5h

6
, (xi −

f1
2

+
5f3
2

+
f5
2

), (yi −
g1
2

+
5g3
2

+
g5
2

)),

f7 = hf(ti + h, (xi +
f1
7

+
2f3
7

+
12f4

7
− 12f5

7
+ f6), (yi +

g1
7

+
2g3
7

+
12g4

7
− 12g5

7
+ g6)),

g7 = hg(ti + h, (xi +
f1
7

+
2f3
7

+
12f4

7
− 12f5

7
+ f6), (yi +

g1
7

+
2g3
7

+
12g4

7
− 12g5

7
+ g6)).

5 Results and Discussion

The numerical solution of LCR circuits using the various iterative techniques discussed

above is compared to the analytical solution in the ensuing subsection. Also, we analyze

the different characteristics of damping factor for the both series and parallel LCR circuit

by using the best efficient numerical method which is sixth order Runge Kutta method

(RK6).

5.1 Comparison of numerical and analytical solutions

In the given subsection, we simulate the numerical solution for series and parallel circuits

respectively for under damped conditions with their analytical solution and comparison is

done by calculating the absolute error at specific time period.

5.1.1 For Series LCR Circuit

The simulation time in this experiment is from 0 s to 20 s for all situations taking a step

size of h = 0.1s. Likewise, let direct source voltage (V s) = 6V , Resistance (R) = 1 ohm ,

Inductane (I) = 1H & Capacitance (C) = 0.25F to obtain the simulation result of LCR

circuit [5].
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Figure 3: Comparison of Euler, RK4, RK6 and Exact solution for series circuit.

Table 1: Results from simulations using numerical techniques & analytical solution with an

absolute error.

Time (sec) Euler RK4 RK6 Exact

Voltage Error Voltage Error Voltage Error Voltage

0.0 sec 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

0.1 sec 0.000000 0.114378 0.011960 0.102418 0.168186 0.053808 0.114378

0.2 sec 0.240000 0.203654 0.261484 0.182170 0.533736 0.090082 0.443654

0.3 sec 0.696000 0.256189 0.723512 0.228677 1.061245 0.109056 0.952189

0.4 sec 1.336800 0.275764 1.366120 0.246444 1.713234 0.100670 1.612564

0.5 sec 1.336800 1.029671 2.152233 0.214238 2.451763 0.085292 2.366471

0.6 sec 2.125680 1.064150 3.041423 0.148407 3.239892 0.050062 3.189830

0.7 sec 3.022200 0.982692 3.991735 0.013157 4.042936 0.038044 4.004892

0.8 sec 4.968810 0.084868 4.961454 0.077512 4.829500 0.054442 4.883942

0.9 sec 5.935740 0.243419 5.910749 0.218428 5.572277 0.120044 5.692321

1.0 sec 6.847225 0.422573 6.803138 0.378486 6.248608 0.176044 6.424652

The simulation results of the iterative solution of the LCR circuit with the exact solution

under the previously stated conditions is shown in Fig. 3. The computed points of three

numerical methods i.e., Euler, RK4 & RK6 are taken at specific point for the comparison

of accuracy of the numerical methods and is given by Tab. 3. Likewise, the oscillation is

more for Euler method than RK4, RK6 and exact methods. We see that error between

oscillation of Euler and RK4 is comparatively less than each other but is more than RK6

and exact solutions. The oscillation decreases slowly after the increment of time and at

infinite time all solution converges uniformly.
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5.1.2 For Parallel LCR Circuit

The simulation time in this experiment is from 0 s to 20 s for all situations taking a step

size of h = 0.1s. Likewise, let direct source voltage (V s) = 6V , Resistance (R) = 2 ohm ,

Inductane (I) = 1H & Capacitance (C) = 0.25F to obtain the simulation result of LCR

circuit [5].

Figure 4: Comparison of Euler, RK4, RK6 and Exact solution for parallel circuit.

Table 2: Results from simulations using numerical techniques & analytical solution with an

absolute error.

Time (sec) Euler RK4 RK6 Exact

Voltage Error Voltage Error Voltage Error Voltage

0.0 sec 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

0.1 sec 0.000000 0.737550 0.047680 0.689870 0.644902 0.092468 0.737550

0.2 sec 0.960000 1.221952 1.036162 1.145790 1.972012 0.2098860 2.181952

0.3 sec 2.68800 1.464886 2.773533 1.379353 3.806136 0.34675 4.152886

0.4 sec 4.992000 1.491691 5.069390 1.414301 5.987573 0.496118 6.483691

0.5 sec 7.687680 1.337233 7.742125 1.282788 8.375207 0.649706 9.024913

0.6 sec 10.304544 1.042045 10.624699 1.021890 10.847579 0.799010 11.646589

0.7 sec 13.590528 0.648876 13.568884 0.670510 13.303391 0.936013 14.239404

0.8 sec 16.515133 0.199770 16.448082 0.266821 16.261162 0.513741 16.714903

0.9 sec 19.271197 0.266292 19.158826 0.153921 19.411536 0.406631 19.004905

1.0 sec 21.775442 0.715153 21..621120 0.560831 21.466798 0.406569 21.060289
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Likewise, we see that the oscillation is comparatively less in parallel circuit than the se-

ries circuit and this means it is damped quickly. In this circuit, we found that Euler method

gives high oscillation than other methods but the error is more than RK4, RK6 and exact

solutions. Damping increases with increment of time and as time increases infinitely all

oscillations are damped and all solution converge uniformly.

Hence, when compared to the other numerical techniques i.e., Euler and RK4, the numerical

approximation solution curve computed by the Runge-Kutta method of sixth order (RK6)

is approaching quicker towards the analytical solution. Errors have been calculated indi-

vidually at each time second and this shows that the relative error between the analytical

solution and RK6 solution is comparatively less than other two methods. Thus, we deduce

that the RK6 approach is the most effective way to estimate the solution of the LCR circuit.

5.2 Damping Conditions

In an LCR circuit, damping is the term used to describe how a resistive component gradually

reduces oscillations or vibrations in the circuit. It is the process that eventually results in

a steady state by gradually reducing the oscillation’s amplitude.

5.2.1 In Series Circuit

RK6 approach is used in this circuit to visualize all three damping scenarios (i.e., under

damped, critically damped and over damped). Table 3 gives the values of electrical elements

i.e., source voltage, resistance, inductor and capacitor for different damping condition.

Additionally, results are simulated under the previously described conditions with various

time-specific points in Fig. 5. Table 4 gives the values of three damping conditions by using

RK6 method for series circuit.

Element Damping Value

Cond. 1 Cond. 2 Cond. 3

Resistor
Under- Critically- Over-

Damped Damped Damped

Voltage 6 Volt 6 Volt 6 Volt

Resistance < 4Ω 4 Ω > 4Ω

Inductor 1 Henry 1 Henry 1 Henry

Capacitor 0.25 Farad 0.25 Farad 0.25 Farad

Table 3: Electrical elements values for three distinct damping circumstances in a series

[11].
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Figure 5: Comparison of all three different damping conditions by applying RK6 series.

Table 4: All damping features of RK6 and their respective values for series.

Time (sec) Different Value of RK6 Method

Under-Damped Critically-Damped Over-Damped

0.0 sec 0.000000 0.000000 0.000000

0.1 sec 0.164656 0.148423 0.136930

0.2 sec 0.512743 0.425057 0.371173

0.3 sec 1.063963 0.781100 0.650941

0.4 sec 1.599025 1.180798 0.965764

0.5 sec 2.260901 1.598392 1.280176

0.6 sec 2.955797 2.015728 1.589688

0.7 sec 3.653875 2.420398 1.888212

0.8 sec 4.329716 2.804294 2.172432

0.9 sec 4.962558 3.162494 2.440755

1.0 sec 5.536324 3.492399 2.692653

5.2.2 In Parallel Circuit

Again, all three damping scenarios (i.e., Under damped, critically damped & over damped)

visualized by RK6 method. Table 5 gives the values of all electrical elements like resistor,

source voltage, inductor and capacitor for different damping condition. Also, results are

simulated under the previously described conditions with various time-specific points in Fig.

6. Table 6 gives the values of three damping conditions by using RK6 method for parallel

circuit.
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Element Damping Values

Cond. 1 Cond. 2 Cond. 3

Resistor
Under- Critically- Over-

Damped Damped Damped

Voltage 6 Volt 6 Volt 6 Volt

Resistance > 1Ω 1 Ω < 1Ω

Inductor 1 Henry 1 Henry 1 Henry

Capacitor 0.25 Farad 0.25 Farad 0.25 Farad

Table 5: Electrical elements values for three distinct damping circumstances in a parallel

[11].

Figure 6: Comparison of all three different damping conditions by applying RK6 parallel.

Table 6: All damping features of RK6 and their respective values for parallel.

Time (sec) Different Value of RK6 Method

Under-Damped Critically-Damped Over-Damped

0.0 sec 0.000000 0.000000 0.000000

0.1 sec 0.644902 0.593693 0.506146

0.2 sec 1.972027 1.700228 1.311301

0.3 sec 3.806136 3.124398 2.255384

0.4 sec 5.987573 4.723191 3.250947

0.5 sec 8.375207 6.393567 4.250781

0.6 sec 10.847579 8.062911 5.229934

0.7 sec 13.303391 9.681590 6.175750

0.8 sec 15.661162 11.217177 7.082329

0.9 sec 17.858274 12.649976 7.947467

1.0 sec 19.849543 13.969596 8.770952
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6 Conclusions

In this study, we analyzed the transient analysis of both series and parallel LCR circuits by

applying the analytical, Euler (Forward), RK4 and RK6 methods. Computational software

is dominantly used for obtaining the transient analysis systematically and conveniently.

Due to circuit complexity, obtaining analytical solution is very difficult so our experiment

suggests and shows that the numerical approximation is suitable for transient analysis. At

first, we modeled the second order differential equations into system of first order differential

equation and solved them using different numerical approximations. It has been found that

the for under damped condition for series and parallel LCR circuits both, RK6 method is

very efficient method due to less error than other two methods i.e., Euler (Forward) and

RK4. We also found that the oscillation behaves differently for series and parallel circuit. If

we see Fig. 3 and Fig. 4, the damping is faster in parallel circuit for all numerical and exact

solution than series circuit. Likewise, we also experimented the three damping character-

istics for both series and parallel circuits by using RK6 method by taking different values

resistance and found that oscillation gradually decreases with increase of time in different

nature. The oscillation is high for under damped condition and reduces gradually for crit-

ically and over damped respectively in both circuits. It also shows that the oscillation for

series circuit for under damped condition is more than parallel circuit. Difference between

critically and over damped conditions is comparatively less in series circuit than parallel

circuit. As time increases infinitely, all three damping conditions converges uniformly in

both series and parallel LCR circuit. Our experiment clearly shows that the under damped

decay for both circuits are oscillatory and exponential in nature. This response aids us to

build a system that satisfies our needs, and we can additionally improve the time domain

settings of the system. Thus, we deduce that by varying the conditions from one steady

value to next while conducting a system’s transient analysis, we can determine the system’s

response accurately. Hence, to obtain the more accuracy, we prefer using high order nu-

merical methods.

Acknowledgment: I, Manoj K.C. sincerely thanks the anonymous referees for their valu-

able suggestions, which significantly enhanced this article, and acknowledge the Research

Directorate, Rector Office, Tribhuvan University for providing financial support through

the M.Sc. fellowship - 2024.

References

[1] Ahamad, N., & Charan, S. (2019). Study of numerical solution of fourth order ordi-

nary differential equations by fifth order runge-kutta method. International Journal of

Scientific Research in Science, Engineering and Technology, 6(1), 230-238.

27



The Nepali Math. Sc. Report Year: 2025, Volume: 42, No: 1

[2] Boyce, W. E., DiPrima, R. C., & Meade, D. B. (2017). Elementary differential equa-

tions. John Wiley & Sons.

[3] Butcher, J. C. (2016). Numerical methods for ordinary differential equations. John

Wiley & Sons.

[4] Fehlberg, E. (1974). Classical seventh, sixth, and fifth-order Runge-Kutta-Nystróm
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