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Abstract

In this article , we explore the properties and relations of the hypergeometric superhy-

berbolic functions in terms of generalized hypergeometric functions. Then we express

the hypergeometric superhyberbolic functions with the help of hypergeometric functions

to obtain an integral representation related to classical results within the theory of gen-

eralized hypergeometric functions. The work emphasises conditions of convergence, and

special cases where the results can be expressed in a simple form and provide a unified

framework for evaluating integrals involving hypergeometric functions.

Keywords: Pochhammer symbol, Gamma function, Hypergeometric superhyperbolic func-

tion.

AMS(MOS) Subject Classification: 33C20.

1 Introduction and Preliminaries

Hypergeometric functions are a class of special functions and are solutions of second-order

linear differential equations.The integration of hypergeometric superhyperbolic functions

represents an advanced area of mathematical analysis. It has significant applications in

mathematical physics,engineering, and computational mathematics. Hypergeometric func-

tions provides a unifying framework for various classes of special functions, including hy-

pergeometric superhyperbolic functions.[3, 4, 10, 12, 13]
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This study focuses on evaluating the integrals of hypergeometric superhyperbolic functions

based on well-established theory of generalized hypergeometric functions.The approach en-

ables a systematic way to derive integral representations of hypergeometric superhyperbolic

functions and clarify the conditions for their convergence.[6, 7, 9]

The foundation of hypergeometric functions comes from the works of Euler, Gauss, and Rie-

mann in the 18th and 19th centuries. In the 19th century, Clausen defined the generalized

hypergeometric function [1, 13]. The hypergeometric superhyperbolic functions are those

that arise from the extension of the hyperbolic and hypergeometric functions. The integra-

tion technique has evolved to include those of the hypergeometric functions; indeed starting

from the pioneer work by Kummer,Whipple, Saalschutz and modern applications of such

functions to complex integrals and the solutions of differential equations. [1, 11, 12, 13, 14]

Before proceeding with the main work, we shall explain some basic notations and defi-

nitions that are used in this paper.

The gamma function of n is denoted by Γ(n) and is defined by [8]

Γ(n) =

∫ ∞
0

e−ttn−1dt, Re(n) > 0

where Γ(n+ 1) = nΓ(n) ,Γ(n+ 1) = n!, & Γ(1/2) =
√
π.

Beta function of m and n is denoted by B(m,n) and is defined by [6]

B(m,n) =

∫ 1

0
xm−1(1− x)n−1dx, Re(m) > 0, Re(n) > 0 & B(m,n) =

Γ(m)Γ(n)

Γ(m+ n)
.

Pochhammer Symbol was introduced by the German mathematician Leo Pochhammer

(1841-1920) [10]. It is defined by

(b)n =
n∏
k=1

(b+ k − 1), (b)n =
Γ(b+ n)

Γ(b)
, (b)0 = 1, (1)n = n!

where n is a non- negative integer.

In 1812, Gauss systematically studied the series

1 +
αβ

γ

x

1!
+
α(α+ 1).β(β + 1)

γ(γ + 1)

x2

2!
+ ... (1.1)

The ordinary hypergeometric series is another name for the series (1.1), which is frequently

referred to as Gauss’s series or function. It can be regarded as an extension of the geometric

series.

1 + x+ x2 + x3 + ...
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The series (1.1) is denoted by 2F1[α, β; γ;x] or 2F1


α, β

;x

γ

 and written in the form

2F1


α, β

;x

γ

 =

∞∑
n=0

(α)n(β)n
(γ)n

xn

n!
(1.2)

where α and β are numerator parameters, while γ is the denominator parameter. For

γ 6= 0,−1,−2,−3, . . . and α or β is a negative integer, the series (1.2) will terminate. The

Gauss’s hypergeometric series (1.2) is

i. convergent if |x| < 1, divergent if |x| > 1,

ii. convergent if R(γ − α− β) > 0 when x = 1,

iii. convergent absolutely if R(γ − α− β) > 0 when x = −1,

iv. convergent but not absolutely if −1 ≤ R(γ − α− β) < 0 when x = −1,

The natural generalization of the Gauss’s hypergeometric function 2F1 is called the gener-

alized hypergeometric function denoted by pFq [1, 12] and is defined by

pFq


α1, ..., αp

;x

β1, ..., βq

 =

∞∑
n=0

(α1)n...(αp)n
(β1)n...(βq)n

xn

n!
(1.3)

The generalized hypergeometric function (1.3) converges for all finite x if p ≤ q. More-

over, it is also convergent for |x| < 1 if p = q + 1, and absolutely convergent on |x| > 1 if

p = q + 1 and Re(
∑q

j=1 βj −
∑p

i=1 αi) > 0 [12].

2 The Hypergeometric Superhyperbolic Functions via Gen-

eralized Hypergeometric Functions

The family of the hypergeometric functions containing the hypergeometric superhyperbolic

sine, hypergeometric superhyperbolic cosine, hypergeometric superhyperbolic tangent, hy-

pergeometric superhyperbolic cotangent, hypergeometric superhyperbolic secant and hyper-

geometric superhyperbolic cosecant is called the hypergeometric superhyperbolic functions

via generalized hypergeometric functions [13, 14].

The hypergeometric superhyperbolic sine and cosine function via generalized hypergeomet-

ric function is defined as [13, 14]

pSupersinhq

[
r1, ..., rp

s1, ..., sq
;x

]
=

∞∑
n=0

(r1)2n+1...(rp)2n+1

(s1)2n+1...(sq)2n+1

x2n+1

(2n+ 1)!
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pSupercoshq

[
r1, ..., rp

s1, ..., sq
;x

]
=

∞∑
n=0

(r1)2n...(rp)2n
(s1)2n...(sq)2n

x2n

(2n)!

where rn, sn ∈ C and n, p, q ∈ N0.

Both hypergeometric superhyperbolic sine and hypergeometric superhyperbolic cosine func-

tions via generalized hypergeometric functions are convergent for all finite x if p < q. More-

over these functions are convergent for |x| < 1 if p = q + 1, and absolutely convergent on

|x| > 1 if p = q + 1 and Re(
∑q

j=1 βj −
∑p

i=1 αi) > 0 [13, 14].

Also,

pSupertanhq =
pSupersinhq

pSupercoshq

Similarly, others pSupercothq, pSupersechq and pSupercosechq can also be defined.

Relation between hypergeometric superhyperbolic functions and generalized

hypergeometric functions [13, 14]

i. pSupersinhq

[
r1, ..., rp

s1, ..., sq
;x

]
=

1

2

[
pFq

[
r1, ..., rp

s1, ..., sq
;x

]
− pFq

[
r1, ..., rp

s1, ..., sq
;−x

]]
(2.1)

ii. pSupercoshq

[
r1, ..., rp

s1, ..., sq
;x

]
=

1

2

[
pFq

[
r1, ..., rp

s1, ..., sq
;x

]
+ pFq

[
r1, ..., rp

s1, ..., sq
;−x

]]
(2.2)

Proof:

Let right hand side of (2.1) be denoted by I. Then

I =
1

2

[
pFq

[
r1, ..., rp

s1, ..., sq
;x

]
− pFq

[
r1, ..., rp

s1, ..., sq
;−x

]]

=
1

2

[ ∞∑
n=0

(r1)n...(rp)n
(s1)n...(sq)n

xn

(n)!
−
∞∑
n=0

(r1)n...(rp)n
(s1)n...(sq)n

(−x)n

(n)!

]

=
1

2

∞∑
n=0

(r1)n...(rp)n
(s1)n...(sq)n

xn

(n)!
[1− (−1)n]

where n is an odd positive integer and then replacing n by 2n+ 1 we have

I =
∞∑
n=0

(r1)2n+1...(rp)2n+1

(s1)2n+1...(sq)2n+1

x2n+1

(2n+ 1)!
= pSupersinhq

[
r1, ..., rp

s1, ..., sq
;x

]
.

Similarly, the same process can be applied for (2.2)
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3 Integral Theorems Involving Generalized Hypergeometric

Functions

Theorem 3.1 [1, 12] If p ≤ q + 1, Re(r1) > 0, ..., Re(rp) > 0, Re(s1) > 0, ..., Re(sp) > 0

and |x| < 1, then

pFq

[
r1, ..., rp

s1, ..., sq
;x

]
=

Γ(s1)

Γ(r1)Γ(s1 − r1)

∫ 1

0
tr1−1(1− t)s1−r1−1 p−1Fq−1

[
r2, ..., rp

s2, ..., sq
;xt

]
dt

(3.1)

Corollary(3.1) [2, 12] If Re(r3) > Re(r2) > 0 and |x| < 1, then

2F1

[
r1, r2

r3
;x

]
=

Γ(r3)

Γ(r2)Γ(r3 − r2)

∫ 1

0
tr2−1(1− t)r3−r2−1 (1− tx)−r1dt

=
Γ(r3)

Γ(r2)Γ(r3 − r2)

∫ 1

0
tr2−1(1− t)r3−r2−1 1F0

[
r1,

−
;xt

]
(3.2)

Corollory (3.2) [2, 12] If Re(r2) > Re(r1) > 0 and |x| < 1, then

1F1

[
r1

r2
;x

]
=

Γ(r2)

Γ(r1)Γ(r2 − r1)

∫ 1

0
tr2−1(1− t)r3−r2−1extdt (3.3)

Theorem 3.2 [1, 12]

IfRe(α) > 0, Re(β) > 0, Re(r1) > 0, ..., Re(rp) > 0, Re(s1) > 0, ..., Re(sq) > 0, Re(
∑q

k=1 sk−∑p
k=1 rk) > 0, |x| < 1 and k ∈ N

i.

∫ t

0
xα−1(t− x)β−1 pFq

[
r1, ..., rp

s1, ..., sq
;λxk

]
dx

= B(α, β) tα+β−1 p+kFq+k

[
r1, ..., rp,

α
k , ...,

α+k−1
k

s1, ..., sq,
α+β
k , ..., α+β+k−1k

;λtk

]
(3.4)

ii.

∫ t

0
xα−1(t− x)β−1 pFq

[
r1, ..., rp

s1, ..., sq
;λxk(t− x)s

]
dx

= B(α, β)tα+β−1p+kFq+k

[
r1, ..., rp,

α
k , ...,

α+k−1
k , βs , ...,

β+s−1
s

s1, ..., sq,
α+β
k+s , ...,

α+β+k+s−1
k+s

;
kkssλtk+s

k + s

]
(3.5)

where λ is a constant.

Theorem (3.3): [9] If Re(α) > 0, Re(β) > 0, Re(r1) > 0, ..., Re(rp) > 0, Re(s1) >

0, ..., Re(sq) > 0, Re(
∑q

k=1 sk −
∑p

k=1 rk) > 0 then∫ t

0
xα−1(t− x)β−1 pFq

[
r1, ..., rp

s1, ..., sq
;x)

]
dx = B(α, β)p+kFq+k

[
r1, ..., rp, α

s1, ..., sq, α+ β
; 1

]
(3.6)
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4 Main Results

In this section ,we evaluate some integrals involving hypergeometric superhyperbolic func-

tions.

Theorem 4.1 If p ≤ q + 1, Re(r1) > 0, ..., Re(rp) > 0, Re(s1) > 0, ..., Re(sp) > 0 and |x| < 1,

then

i) pSupersinhq

[
r1, ..., rp

s1, ..., sq
;x

]

=
Γ(s1)

Γ(r1)Γ(s1 − r1)

∫ 1

0
tr1−1(1− t)s1−r1−1 p−1Supersinhq−1

[
r2, ..., rp

s2, ..., sq
;xt

]
dt (4.1)

ii. pSupercoshq

[
r1, ..., rp

s1, ..., sq
;x

]

=
Γ(s1)

Γ(r1)Γ(s1 − r1)

∫ 1

0
tr1−1(1− t)s1−r1−1 p−1Supercoshq−1

[
r2, ..., rp

s2, ..., sq
;xt

]
dt (4.2)

Proof (i): Let left side of (4.1) be denoted by I and using (2.1) and (3.1), then

I = pSupersinhq

[
r1, ..., rp

s1, ..., sq
;x

]
=

1

2

{
pFq

[
r1, ..., rp

s1, ..., sq
;x

]
− pFq

[
r1, ..., rp

s1, ..., sq
;−x

]}

=
Γ(s1)

Γ(r1)Γ(s1 − r1)

∫ 1

0
tr1−1(1− t)s1−r1−1 p−1Fq−1

[
r2, ..., rp

s2, ..., sq
;xt

]
dt

− Γ(s1)

Γ(r1)Γ(s1 − r1)

∫ 1

0
tr1−1(1− t)s1−r1−1 p−1Fq−1

[
r2, ..., rp

s2, ..., sq
;−xt

]
dt

=
Γ(s1)

Γ(r1)Γ(s1 − r1)

∫ 1

0
tr1−1(1− t)s1−r1−1 1

2

[
p−1Fq−1

[
r2, ..., rp

s2, ..., sq
;xt

]
−p−1 Fq−1

[
r2, ..., rp

s2, ..., sq
;−xt

]]
dt

=
Γ(s1)

Γ(r1)Γ(s1 − r1)

∫ 1

0
tr1−1(1− t)s1−r1−1 p−1Supersinhq−1

[
r2, ..., rp

s2, ..., sq
;xt

]
dt

Similarly, we can prove (ii).

Corollary 4.1

If Re(r3) > Re(r2) > 0 and |x| < 1 ,then

i. 2Supersinh1

[
r1, r2

r3
;x

]
=

Γ(r3)

Γ(r2)Γ(r3 − r2)

∫ 1

0
tr2−1(1− t)r3−r2−1 1Supersinh0

[
r1

−
;xt

]
dt

(4.3)
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ii. 2Supercosh1

[
r1, r2

r3
;x

]
=

Γ(r3)

Γ(r2)Γ(r3 − r2)

∫ 1

0
tr2−1(1− t)r3−r2−1 1Supercosh0

[
r1

−
;xt

]
dt

(4.4)

Corollorary 4.2 If Re(r2) > Re(r1) > 0 where r1, r2, x ∈ C, then

i) 1Supersinh1

[
r1

r2
;x

]
=

Γ(r2)

Γ(r1)Γ(r2 − r1)

∫ 1

0
tr1−1(1− t)r2−r1−1 sinhxt dt (4.5)

ii) 1Supercosh1

[
r1

r2
;x

]
=

Γ(r2)

Γ(r1)Γ(r2 − r1)

∫ 1

0
tr1−1(1− t)r2−r1−1 coshxt dt (4.6)

Theorem 4.2:

IfRe(α) > 0, Re(β) > 0, Re(r1) > 0, ..., Re(rp) > 0, Re(s1) > 0, ..., Re(sq) > 0, Re(
∑q

k=1 sk−∑p
k=1 rk) > 0, |t| < 1 and k ∈ N then

i.

∫ t

0
xα−1(t− x)β−1 pSupersinhq

[
r1, ..., rp

s1, ..., sq
;λxk

]
dx

= B(α, β) · tα+β−1 ·p+k Supersinhq+k

[
r1, ..., rp,

α
k , ...,

α+k−1
k

s1, ..., sq,
α+β
k , ..., α+β+k−1k

;λtk

]
(4.7)

ii.

∫ t

0
xα−1(t− x)β−1 pSupercoshq

[
r1, ..., rp

s1, ..., sq
;λxk

]
dx

= B(α, β) · tα+β−1 ·p+k Supercoshq+k

[
r1, ..., rp,

α
k , ...,

α+k−1
k

s1, ..., sq,
α+β
k , ..., α+β+k−1k

;λtk

]
(4.8)

where λ is a constant.

Theorem 4.3: IfRe(α) > 0, Re(β) > 0, Re(r1) > 0, ..., Re(rp) > 0, Re(s1) > 0, ..., Re(sq) >

0, p, q ∈ N0, |x| < 1 and k, s ∈ N then

i.

∫ t

0
xα−1(t− x)β−1 pSupersinhq

[
r1, ..., rp

s1, ..., sq
;λxk(t− x)s

]
dt

= B(α, β) · tα+β−1 ·p+k Supersinhq+k

[
r1, ..., rp,

α
k , ...,

α+k−1
k , βs , ...,

β+s−1
s

s1, ..., sq,
α+β
k+s , ...,

α+β+k+s−1
k+s

;
kkssλtk+s

k + s

]
(4.9)
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ii.

∫ t

0
xα−1(t− x)β−1 pSupercoshq

[
r1, ..., rp

s1, ..., sq
;λxk(t− x)s

]
dt

= B(α, β) · tα+β−1 ·p+k Supercoshq+k

[
r1, ..., rp,

α
k , ...,

α+k−1
k , βs , ...,

β+s−1
s

s1, ..., sq,
α+β
k+s , ...,

α+β+k+s−1
k+s

;
kkssλtk+s

k + s

]
(4.10)

where λ is a constant.

Proof (i): Let left hand side of (4.9) be denoted by I and using (2.1)and (3.5), then

I =

∫ t

0
xα−1(t− x)β−1 pSupersinhq

[
r1, ..., rp

s1, ..., sq
;λxk(t− x)s

]
dt

=

∫ t

0
xα−1(t− x)β−1

1

2

[
pFq

[
r1, ..., rp

s1, ..., sq
;λxk(t− x)s

]
− pFq

[
r1, ..., rp

s1, ..., sq
;−λxk(t− x)s

]]
dt

= tα+β−1
1

2
B(α, β)

[
p+kFq+k

[
r1, ..., rp,

α
k , ...,

α+k−1
k , βs , ...,

β+s−1
s

s1, ..., sq,
α+β
k+s , ...,

α+β+k+s−1
k+s

;
kkssλtk+s

k + s

]

−p+kFq+k

[
r1, ..., rp,

α
k , ...,

α+k−1
k , βs , ...,

β+s−1
s

s1, ..., sq,
α+β
k+s , ...,

α+β+k+s−1
k+s

;−k
kssλtk+s

k + s

]

= B(α, β)tα+β−1 p+kSupersinhq+k

[
r1, ..., rp,

α
k , ...,

α+k−1
k , βs , ...,

β+s−1
s

s1, ..., sq,
α+β
k+s , ...,

α+β+k+s−1
k+s

;
kkssλtk+s

k + s

]

Similarly, we can prove (ii).

Theorem 4.4. IfRe(α) > 0, Re(β) > 0, Re(r1) > 0, ..., Re(rp) > 0, Re(s1) > 0, ..., Re(sq) >

0 and Re(
∑q

k=1 sk −
∑p

k=1 rk) > 0, then

i)

∫ 1

0
xα−1(1− x)β−1 ·p Supersinhq

[
r1, ..., rp

s1, ..., sq
;x

]
dx = B(α, β)p+1Supersinhq+1

[
r1, ..., rp, α

s1, ..., sq, α+ β
; 1

]
(4.11)

ii)

∫ 1

0
xα−1(1− x)β−1 ·p Supercoshq

[
r1, ..., rp

s1, ..., sq
;x

]
dx = B(α, β)p+1Supercoshq+1

[
r1, ..., rp, α

s1, ..., sq, α+ β
; 1

]
(4.12)

Proof :

Let left hand side of (4.11) be denoted by I, and using (2.1) and (3.6), then

I =

∫ 1

0
xα−1(1− x)β−1 ·p Supersinhq

[
r1, ..., rp

s1, ..., sq
;x

]
dx
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=

∫ 1

0
xα−1(1− x)β−1

1

2

[
pFq

[
r1, ..., rp

s1, ..., sq
;x

]
−p Fq

[
r1, ..., rp

s1, ..., sq
;−x

]]
dx

= B(α, β)
1

2

[
p+1Fq+1

[
r1, ..., rp, α

s1, ..., sq, α+ β
; 1

]
−p+1 Fq+1

[
r1, ..., rp, α

s1, ..., sq, α+ β
;−1

]]

= B(α, β)p+1Supersinhq+1

[
r1, ..., rp, α

s1, ..., sq, α+ β
; 1

]
= RHS

5 Some Special Cases

i. Putting p = 3, q = 2, r1 = r2 = r3 = 1 and s1 = s2 = 2 in (4.1) and (4.2), we have

a. 3Supersinh2

[
1, 1, 1

2, 2
;x

]
=

x

22
+
x3

42
+
x5

62
+ ...

b. 3Supercosh2

[
1, 1, 1

2, 2
;x

]
= 1 +

x2

32
+
x4

52
+
x6

72
+ ...

ii. Putting α = β = 1, p = 1, q = 0, λ = 1, r1 = 1, k = 1 in (4.7) and (4.8), we have

a.

∫ x

0
1Supersinh0

[
1

−
; t

]
dt =

x2

2
+
x4

4
+
x6

6
+ ...

b.

∫ x

0
1Supercosh0

[
1

−
; t

]
dt = x+

x3

3
+
x5

5
+
x7

7
+ ... = tanh−1(x)

where −1 < x < 1.

iii. Putting α = 1, β = 1, p = 1, q = 0 and r1 = 1in (4.11) and (4.12) then

a.

∫ 1

0
1Supersinh0

[
1

−
; t

]
dt =

1

2
+

1

4
+

1

6
+ ...

b.

∫ 1

0
1Supersinh0

[
1

−
; t

]
dt = 1 +

1

3
+

1

5
+

1

7
+ ...

6 Conclusion

In this study, we have presented some theorems related to the integrals of hypergeometric

superhyperbolic functions, all based on generalized hypergeometric functions. We also iden-

tified specific cases where these integrals reduce to more compact and simple expressions.

These findings may be highly useful and relevant to disciplines related to mathematical

physics, engineering, and computational mathematics.
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