Infinitesimal Variation of Hypersurfaces of an Almost r-Contact Hyperbolic Structure Manifold

JAYA UPRETI

Summary: The infinitesimal variation of the structure tensors of an almost contact metric structure induced on the hyper surface of a Kahlerian manifold under various conditions has been studied by Yano. In this paper we have studied the infinitesimal variation of the structure tensors of an almost r-contact hyperbolic structure induced on the hyper surface of a differentiable manifold equipped with an almost r-contact hyperbolic structure.

1. Introduction:

Let M^{n+r} be an $(n+r)$ dimensional differentiable manifold of differentiability class C^∞. Let there exist on M^{n+r} a C^∞ vector valued linear function F, an rC^∞ linearly independent and non-zero contravariant vector fields T^1, T^2, \ldots, T^r such that

$$F^2 X = X + \sum_{i=1}^r A_i(x) T^i$$

for arbitrary vector field X on M^{n+r}. Also

$$F(X) = \overline{X}$$

In view of (1.1), let M^{n+r} be endowed with the Riemannian metric G such that it satisfies the following condition.

$$G(\overline{X}, \overline{Y}) + G(X, Y) + \sum_{i=1}^r A_i(X) A_i(Y) = 0$$
Thus M^{n+r} satisfying the conditions (1.1) and (1.3) will be called an almost r-contact hyperbolic structure manifold [2].

In M^{n+r} the following results hold

\begin{align*}
(1.4) & \quad T^l = 0, \\
(a) \\
(1.5) & \quad A_l (\bar{X}) = 0, \text{ for arbitrary vector field } X. \\
(b) \\
(1.6) & \quad T^l (T^m) + \delta^l_m = 0,
\end{align*}

Where δ^l_m is Kronecker delta and l,m take the values $1,2,\ldots,r$.

Let us imbed a hypersurface M^{n+r-1} into M^{n+r} by the isometric immersion $b : M^{n+r-1} \to M^{n+r}$. Corresponding to this we have the Jacobian b^* of b denoted by B which carries $T_q (M^{n+r-1})$ into $T_b (M^{n+r})$ injectively. Since the immersion is isometric, we have

\begin{align*}
(1.7) & \quad G(BX, BY) = g(X,Y),
\end{align*}

g being the metric induced on the hyper surface and X,Y denote arbitrary vector fields. We have

\begin{align*}
(1.8) & \quad G(BX, N) = 0, \\
(1.9) & \quad G(N, N) = 1.
\end{align*}

The transformation equations are

\begin{align*}
(1.10) & \quad FBX = BfX + \alpha (X) N, \\
(1.11) & \quad FN = B\eta + \eta N,
\end{align*}

where f is a tensor field of type (1.1) and α is a 1-form on M^{n+r-1}. From equation (1.8) and the relations

\begin{align*}
(1.12) & \quad T^l = Bt_l + \delta^l_1, \\
(a) \\
(1.13) & \quad A_l (BX) = \alpha r (X), \\
(b) \\
(1.14) & \quad \alpha (X) P = 0,
\end{align*}

we get

\begin{align*}
(1.15) & \quad f^2 X = X + \sum_{l=1}^r \alpha_l (X) t_l, \\
\end{align*}

The metric g in (1.5) is found to satisfy

\begin{align*}
(1.16) & \quad g(fX, fY) + g(X, Y) + \sum_{l=1}^r \alpha_l (X) \alpha_l (Y) = 0.
\end{align*}
Consequently an almost r-contact hyperbolic structure gets induced on M^{n+r-1}.

Let D be the Riemannina connexion induced on M^{n+r-1}. Then we have the Gauss and Weingarten equations [1].

\begin{align}
E_{BY} BY &= BD_{X}Y + H(X,Y)N, \\
E_{BX} N &= -B'HX,
\end{align}

Where H is the 2nd fundamental form of M^{n+r-1} and $'H$ is a tensor field of type (1,1) associated with H. Let κ and κ' stand for the curvature tensors of the hyper surface and the enveloping manifold. Then we have Gauss and Codazzi equations.

\begin{align}
\kappa(BX, BY, BZ, BU) &= \kappa(X,Y,Z,U) - H(Y,Z)H(X,U) \\
&\quad + H(X,Z)H(Y,U) \\
\kappa'(BX, BY, BZ, N) &= (D_{X}H)(Y,Z) - (D_{Y}H)(X,Z),
\end{align}

Where κ and κ' are the associate covariant curvature tensors of M^{n+r-1} and M^{n+r}. Now let us differentiate equation (1.8) along the hyper surface and use $E_{X}F = 0$ hence

$$E_{BX}BY = F(E_{BY}BY) - ((D_{X}A)Y + A(D_{X}Y))N - A(Y)E_{BX}N.$$

In view of (1.9), (1.13) and (1.14) we get

\begin{align}
(D_{X}f)Y &= H(X,Y)P + \alpha(Y)'HX, \\
(D_{X}\alpha)Y &= H(X,Y)\eta - H(X,f\eta).
\end{align}

Covariant differentiation of (1.9) along M^{n+r-1} yields

\begin{align}
D_{X}P &= \eta 'HX - 'HfX.
\end{align}

Definition 1.1 An almost r-contact hyperbolic structure is said to be normal if

\begin{align}
S(X,Y) &= N(X,Y) + \sum_{i=1}^{r}((D_{X}\alpha)Y - (D_{Y}\alpha)X)t^{i} = 0,
\end{align}

Where

$$N(X,Y) = (D_{[X,f]}f)Y - (D_{f}[X,Y])X + f(D_{X}f)X - f(D_{X}f)Y + \sum_{i=1}^{r}a_{i}[X,Y]t^{i}.$$
Therefore it follows that
(1.22)
So that the normality condition (1.20) takes the form
\[
S(X,Y) = (D_X f)Y - (D_Y f)X + f(D_f X)
- f(D_X f)Y + \sum_{i=1}^{r} a_i [X,Y] t^i .
+ \sum_{i=1}^{r} ((D_X \alpha) Y - (D_Y \alpha) X) t^i = 0.
\]
If almost r-contact hyperbolic structure induces on \(M^{n+r} \) be normal, from the last equation and from (1.17) and (1.18) we obtain
\[
\alpha(X) \{ Hf - f 'H \} Y - \alpha(Y) \{ Hf - f 'H \} X = 0
\]
(1.21)
\('Hf = f 'H \)
Therefore it follows that [1]
(1.22)
\(H(P,P) = 'HP \)
Showing that \(H(P,P) \) is an eigen value of \('H \) and the corresponding eigen vector is \(P \). Let us denote \(H(P,P) \) by \(\tau \).

Definition 1.2. An almost r-contact hyperbolic structure is called r-hyperbolic Sasakian if

(1.23)
\[
\sum_{i=1}^{r} ((D_X \alpha_i) Y - (D_Y \alpha_i) X) = r'f(X,Y).
\]
We have,
\('f(X,Y) = g(fX,Y) \).
More generally in a normal r-contact hyperbolic structure hyper surface of \(M^{n+r} \) we assume that [3]

(1.24)
\[
\sum_{i=1}^{r} ((D_X \alpha_i) Y - (D_Y \alpha_i) X) = r \beta 'f(X,Y).
\]
Applying (1.18) to the above equation we have

(1.25)
\('Hf = 'HF = -r \beta 'f \).
Thus we obtain

(1.26)
\('HX = -r \beta x + (\tau + r' \beta) \alpha(X) P \).
Equation (1.17), (1.18), (1.19) then transform as

(1.27)
\((D_X f) Y = -r \beta \{ g(X,Y)P + \alpha(Y)X \} + 2(\tau + r' \beta) \alpha(X) \alpha(Y), \)
(1.28) \[(D_X \alpha)Y = r' \beta f(X,Y),\]
(1.29) \[D_X P = -(\eta - f) r' \beta X.\]

Let \(\beta \) be a constant so that from (1.27) and (1.29) we obtain
\[K(X, Y, P) = -r'^2 \beta^2 \eta (\alpha(Y)X - \alpha(X)Y),\]
which shows that for a normal \(r \)-contact hyperbolic structure hypersurface satisfying (1.24) and involving constant \(r' \beta \), the sectional curvature with respect to a plane section containing \(P \) is \(r'^2 \beta^2 \).

Let us call such a structure a normal \(r \)-contact hyperbolic structure with \(f \) sectional curvature \(r'^2 \beta^2 \).

2. Infinitesimal Variation of a Hypersurface of an Almost \(r \)-contact Hyperbolic Structure Manifold

Let us take the restriction of an almost decomposable Killing vector field \(U \) on the enveloping manifold of the hypersurface. According the variation of the differential of imbeddimg is given by [4].

\[(\delta B)X = \varepsilon E_{ax} U\]

where \(\varepsilon \) is infinitesimally small number. Splitting \(U \) into its tangential and normal parts as
\[U = BV + \lambda N\]
and from (1.13), (1.14) we express (2.1) as
\[(\delta B)(X) = \varepsilon \{B(D_X V - \lambda HX) + (X \lambda + H(X,Y))N\}.

Infinitesimal Variation of \(N \) is given by [5]
\[(2.4) \delta N = \varepsilon L_{\lambda} N = \varepsilon BW\]

The Lie derivative of \(N \) (i.e., \(L_{\lambda} N \)) being orthogonal to \(N \). Infinitesimal variation of equation (1.6) yields
\[G(BD_X V + H(X,Y)N + (X \lambda)N - \lambda B'(HX,N)) = -G(BX, BW)\]
which implies that \(W = -(\beta HV + \lambda) \)

Where \(\lambda \) stands for the vector field associate to the gradient of \(\lambda \). Thus we have
\[\delta N = -\varepsilon B'(HV + \lambda)\]

Now varying equation (1.8) infinitesimally, we get
\((\delta B)(fX) + B(\delta f)X = F((\delta B)X) - (\delta N) \alpha(X) - \delta \alpha(X)N.\)

Making use of (1.8), (2.3) and (2.4) in it we find
\[
B(\delta f)X + (\delta \alpha)(X)N = \epsilon\left\{ B\left[(D_X V - \lambda'HX)N + \alpha(D_X V - \lambda'HX)N \right.
ight.
\]
\[
\left. + (\lambda + H(X))B + \eta N \right) + \alpha(X)B \left[(\lambda + \eta N) \right] \right\} - B \left[(D_X V - \lambda'HF)X \right] + (fX')(X' + H(fX')N).
\]

Comparing the tangential and normal components, we have
\[
(\delta f)X = \epsilon \left\{ f(D_X V - \lambda'HX) + (H(X,V) + \lambda')P \right. + \alpha(X) \left[(\lambda'P + \lambda'HfX) \right].
\]

and
\[
(\delta \alpha)(X) = \epsilon \left\{ (D_X V - \lambda'HX) + \eta(HX + H(X,V) - X\lambda - H(fX,V)) \right\}
\]

Since the derivative of \(f\) along \(V\) is given by
\[
(L_{fX}f)X = L_f(X) - f(L_fX)
\]
\[
= D_f(X) - D_{fX}V - f(D_fX - D_XV).
\]

Therefore equation (2.5) assumes the following form
\[
(\delta f)X = \epsilon \left\{ (L_{fX}f)X + \lambda(HV - f')X + X\lambda P + \alpha(X)\lambda + 2H(X,V)P \right\}
\]

Applying equation (1.8) and the definition
\[
(L_f\alpha)(X) \overset{\text{def}}{=} (D_f\alpha)(X) + (D_X V)
\]
\[
(\delta \alpha)(X) = \epsilon\left\{ (L_{fX}\alpha)(X) - \alpha \left[\lambda'(HX - (fX'V) \right.
ight.
\]
\[
\left. \left. + 2H(X,V)\eta + 2h(V,fX) \right) \right\}
\]

Next varying equation (1.9) infinitesimally, we get
\[
-\epsilon FB \left[(\lambda'HV + \lambda) \right] = \left\{ B(\delta P) + \epsilon \left\{ B(D_fV - \lambda'H_P) + P\lambda + H(P,V)N \right\} \right\}
\]
\[
- \epsilon \eta B \left[(\lambda'HV + \lambda) \right].
\]

Which by virtue of (1.8) and (2.3) yields
\[
B \delta P = \epsilon \left\{ B(D_PV - \lambda'H_P) + (P\lambda + H(P,V)N) - \epsilon \eta B \left[(\lambda'HV + \lambda) \right] \right\}
\]
\[
= - \epsilon \left\{ Bf \left((\lambda'HV + \lambda) + \alpha'(\lambda'HV + \lambda)N \right) \right\},
\]

whose tangential part reduces in virtue of (1.19) to the form
\[
(2.9) \quad \delta P = \varepsilon [\lambda 'HP + L_\mathcal{U} P + \Lambda (\eta - f)].
\]

Again varying equation (1.5) infinitesimally, we get
\[
(2.10) \quad (\delta g)(X,Y) = G ((\delta B)X, BY) + G (BX, (\delta B)Y),
\]

which in virtue of (2.3) reduces to
\[
(2.11) \quad (\delta g)(X,Y) + \in \{(L_\mathcal{V}, g)(X,Y) - 2\lambda H(X,Y)\}.
\]

Thus we establish the following theorem.

Theorem 2.1. When a hyper surface of an almost r-contact hyperbolic structure manifold varied infinitesimally by means of a vector field \(U = BV + \lambda N \) the structure tensors of almost r-contact hyperbolic structure hypersurface vary according to equations (2.7), (2.8), (2.9) and (2.10).

Corollary 2.1. When a hypersurface of an almost r-contact hyperbolic structure manifold is given infinitesimally tangential variation by means of \(BV \), the variation of the induced almost r-constant hyperbolic structure tensors on the hypersurface are given by their Lie-derivatives along \(V \).

Corollary 2.2. When a hypersurface of an almost r-contact hyperbolic structure manifold is given infinitesimal normal variation by means of \(\lambda N \), the variation of the induced almost r-contact hyperbolic structure tensors on the hyper surface are given by
\[
(2.11) \quad \begin{align*}
(a) & \quad (\delta f)(X) = \in [\lambda ('H f - f 'H)X + X \lambda P + \alpha(X)\Lambda + 2H(X, V)P], \\
(b) & \quad (\delta \alpha)(X) = \in [-\alpha \lambda 'HX - f X \lambda + 2H(X, V) \eta + 2H(V, f X)], \\
(c) & \quad (\delta P) = \in [\lambda 'HP + \Lambda (\eta - f)]. \\
(d) & \quad (\delta g)(X,Y) = -2 \in \lambda H(X,Y).
\end{align*}
\]

The infinitesimal variation is said to be parallel when \(BX \) and \(B \bar{X} \) are both parallel equivalently and when \((\delta B) \lambda \mathcal{X} \) is tangential to the original hyper surface. Since
\[
(\delta B)X = \in [B (D_X V - \lambda 'H X) + (X \lambda + H(X, V) N].
\]

Therefore for an infinitesimal parallel variation it is necessary and sufficient that
\[
(2.12) \quad X \lambda + H(X, V) = 0.
\]

Corollary 2.3. When a hyper surface of an almost r-contact hyperbolic structure manifold is given infinitesimal parallel variation the hypersurface variation the hypersurface
Corollary 2.4. Let the structure induced on a hypersurface of an almost r-contact hyperbolic structure manifold be a normal r-contact hyperbolic structure with f-sectional curvature $r^2 \beta^2$ then the infinitesimal normal parallel variation of the hypersurface makes the structure tensor vary as

\[(\delta f)X = \alpha(X)\Lambda,\]
\[(\delta \alpha)X = -\lambda \tau P,\]
\[(\delta \beta)X = -2 \varepsilon \lambda \tau P,\]
\[(\delta g)(X,Y) = -2 \varepsilon \lambda \{-r'\beta g(X,Y) + (\tau + r'\beta)\alpha(X)\alpha(Y)\}.

3. Variation of r–Hyperbolic Sasakian Hypersurface with f–Sectional Curvature $r^2 \beta^2$

We now assume that an almost r-contact hyperbolic structure induced on the hypersurface is a r-hyperbolic Sasakian structure with f-sectional curvature $r^2 \beta$, we have [1]

\[(3.1) \quad H(X, HY) = r^2 \beta^2 g(X, Y) + (r^2 + r^2 \beta^2)\alpha(X)\alpha(Y)\]
and
\[(3.2) \quad H(X, Y) = -r'\beta g(X, Y) - r'\beta(\delta g)(X,Y) + \delta(\tau + r'\beta)\alpha(X)\alpha(Y).

The variation in the connections and the second fundamental form are given by [1].

\[(3.3) \quad (\delta D)(X,Y) = \varepsilon\{((D_X D)(X,Y) - (D_Y D)(X,Y) - (D_{(X,Y)}D)(X,Y)) + H(X, Y) + \lambda H^*(X, Y)\}

where
\[g H^*(X,Y) = (D_Z H)(X, Y)\]
and
\[(3.4) \quad (\delta H)(X,Y) = \varepsilon\{(L_Y H)(X,Y) - \lambda H(X, HY) + X\lambda - (D_Y \lambda)\lambda + \lambda K(N, BX, BY, N)\}

If the infinitesimal variation of the hypersurface are normal the variation of D would be given by [1].
\[(\delta D)(X,Y) = e[X,Y] + (D_X Y) \lambda + K(N,BX,BY,N) - \lambda H(X'HY) \].

Varying equation (3.2) infinitesimally, we have

\[(\delta H)(X,Y) = -(\delta r'\beta)g(X,Y) - r'\beta(\delta g)(X,Y) \]
\[+ \delta(\pi + r'\beta)(\alpha(X)\alpha(Y)) \]
\[+ (\pi + r'\beta)((\delta \alpha)(X)\alpha(Y) + \alpha(X)(\delta \alpha)(Y)). \]

which with the help of equations (2.8), (2.9), (2.10), (3.5) and

\[(L_{f'} H)(X,Y) = -r'\beta(L_{f'} g)(X,Y) + ((L_{f'} H)(P,P) \]
\[+ 2H(L_{f'} P,P)\alpha(X)\alpha(Y) \]
\[+ (\pi + r'\beta)((L_{f'} \alpha)(X)\alpha(Y) \]
\[+ \alpha(X)(L_{f'} \alpha)(Y)). \]

becomes

\[e\{X,Y\lambda - (D_X Y)\lambda + \lambda K(N,BX,BY,N) - \lambda H(X'HY)\} \]
\[= -2r\beta e\lambda H(X,Y) + e\{PP\lambda - (D_P P)\lambda \}
\[- \lambda H(P,HP) - 2 H(P,\lambda HP - \Lambda(\eta - f)) + \delta r'\beta l \in \} \alpha(Y) \]
\[+ e(\pi + r'\beta)(-\alpha\lambda HX - fX\lambda + 2H(X,V)\eta \]
\[+ 2H(V,fX)\alpha(Y) + (-\alpha\lambda HY + fY\lambda \]
\[+ 2H(Y,V) + 2 H(V,fY) \alpha(X). \]

Conversely if \(\lambda \) satisfies the differential equation (3.8) then by retreating the steps we get (3.3).

Hence we have the following theorem

Theorem 3.1. In order that for an infinitesimal variation (2.1) may have the \(\alpha \)
\(r \)-hyperbolic Sasakian hypersurface with \(f \)-sectional curvature \(-r'^2\beta^2 \) in a
\(r \)-hyperbolic Sasakian with \(f \)-sectional curvature \(-r'\beta^2 - \delta r'^2\beta^2 \), It is
necessary and sufficient that the function \(\lambda \) satisfies the relation

\[e\{XY\lambda - (D_X Y)\lambda + \lambda (K(N,BX,BY,N)) + r'^2\beta^2 (g(X,Y) - \alpha(X) - \alpha(Y)) \]
\[+ (PP\lambda - D_P P)\lambda\alpha(X)\alpha(Y) + (\pi + r'\beta)(-fX\lambda\alpha(Y) \]
\[- fY\lambda\alpha(X)) \}
\[f\{2H(X,V) + 2H(X,fY)\alpha(X) \]
\[+ \{2H(Y,V) + 2H(V,fY)\alpha(X) \]
\[= \delta r'\beta(\alpha(X)\alpha(Y) - g(X,Y)). \]
Corollary 3.1. The infinitesimal normal parallel variation carries a normal γ-hyperbolic Sasakian hypersurface with f-sectional curvature $-r^2 \beta^2$ to a normal γ-hyperbolic Sasakian hypersurface with f-sectional curvature $-r^2 \beta^2 - \delta r^2 \beta^2$ if and only if

\[\lambda \in \{ K(N, BX, BY, N) + r^2 \beta^2 (g(X,Y) - \alpha(X) X(Y)) \} \]

\[= \{ \alpha(X) \alpha(Y) - g(X,Y) \delta r^2 \beta \} \]

Corollary 3.2. If the enveloping manifold of corollary (3.1) be flat the condition reduced to $\delta r^2 \beta = - \lambda \in r^2 \beta^2$.

Hence the proof is obvious.

REFERENCES

JAYA UPRETI
Department of Mathematics
Kumaun University, S. S. J. Campus,
Almora, Uttarakhand.