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Fixed points in group invariant subspaces
M. KAMRUL HASAN AND PARTHA PRATIM DEY
Abstract: We investigate the subspaces of fixed elements (also known as centralizers) of G-invariant
subspaces of ¥ = f:lr where G is a group of % x - permutation matrices, F s the Galois field of order

n
p" for some r> 1 and [] F is the usual canonical vector space of dimension 2 over F. We are able to
1

characterize these subspaces when (p, |G| )= 1. In the case, when p divides |G | all we know is where

to look for these subspaces, namely inside the kernel of = Y. g.
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1. Introduction: :
Let F be a finite field of order p” for some prime p and 2 1. Then ¥ =ﬁ F is a vector
1
space of dimension 7 over I with basis canonical so that a typical vector has the shape
Z=(Ly,... L), Z;€F, i=1,..., n.A[ns] subspace S over F'is a space inside 7 of
dimension s. The dual subspace §* is the subspace orthogonal to .S under the usual scalar
n
product on 7. That is §*= {z € ¥ | (%, 2) = Yux;=0forall u €S }. Then S*isa [mn—s]
i=1

subspace because dim S + dim S = dim V.
Let G be a group of permutation matrices of order z. A subspace S of /s called
G -invariant if (S)g c §.
It is easy to check that if S is G -invariant, so is §*. Let s+e S*. Then
(s4,51g) = (sg%,s4) = (sg~!,54) = 0, when s € S and gt is transpose of g. Then s+g eS* and
S* is a G-invariant subspace.
2. Characterization of Fixed Points when (p, |G)) =1

Throughout this section we will assume that = GF(p") and (p,|G]). Set & = [_2;[ X9
geG

since (2,|GD =1, I%Ia |G ™ exists in F and therefore a exists in the group-ring FG. We

no
nowshowﬂmtaisanidempotmt.Lctvel'=l;[.F.'l‘hen
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1 1 1 1
val=(vaya=\v— Y g)|— X g )=v—; La( g =v IGl X g
( I1G| geG )(|G|geG ) |G g6 geG |G P geG
e >, g=ve and a is indeed an indempotent.
|G|geG
Next we prove a couple of theorems.

Theorem 2.1 : Let G be a group of n x n permutation matrices and F= GF (p”) with
n

(,|G|) =1. If S is a G-invariant subspace of ¥ =[] F, then Sa=Fix(G)
1

Proof: We show that S c Fix; (G). Let £ € Sa. Then x=sa for some s € § and

sa=s(-l— be g)=—]- Y. sg e S . Thus x €S. Moreover for any g € G.

|G| geG |G| geG

1 1 :
xg= sag-.-.s( I—G—l gzog )g =5 ﬁgzagﬁa‘_-z' Hence z = Fix; (G).
€ €

We now prove the other containment i.e. Fixs(G) < Sa. Let 5 € Fixg(G). Then

1 116 1
Yg)=— Ysg=——Xs=—|G|s=s Hences=saeSa. =

Sa=3S5 L

Theorem 2.2 : Let G be a group of n x n permutation matrices and F = GF (p”) with
n

(®,|Gl) = 1.If 8 is a G-invariant subspace of ¥V =[] F, then (Sa)* =Ker a® (S")a.
1

Proof: We prove that (S@)* ¢ Kera+(S")a. Let z € (Sa)*. Then z— sa € Ker aras
o= a. Let us now check if z @ € $*a. Since x €(Sa)*, we have (z,5a) = 0 for Vs €8. Then
0 =(z,50) = (za%,5) = (za,5) and za e S*. By applying & on both sides of xa €S*and using
the idempotence, we obtain z& € S*a. Hence = (z —za) + Ker abelongs to Ker & + ($Ha.
We now want to show that Ker @+ ($*) e (Sa)*. Let  eKer a+(SYa. Then r= k+sta
for some k € K and ste §* and (z,5a) = (k+ s*a, sa) = (k&* + (s*@)a,s) =

(ka+ (s-a)ay5) = (0 +s'a, 5) =0 as sa € S*. Hence z € (Sa) and Kera + (S)ac (Sa)".
Finally, we want to check if Ker @ ($")a= {0}. Let z € Ker @ (§")a= {0}. Then

= sta. Applying arto both sides, we obtain za= (s ). Since z € Ker & and o = g, the
previous equality yields 0 = s*a, which in turn yields 0 = z. Thus Ker an ($Ha= {0}.

Theorem 2.3. Let G be a group of n xn permutation matrices and F=GF(p ") with (p,|G |) =1.

n
If § is a G-invariant subspace of 7 =[] F,then dim Fix, (G)=dim Fixs(G) + dim Fix;/(G)
1

Proof: As Sac Va, we have dim V&= dim Sa + dim ((Sa)* V). By Theorem (2.2.),
(Sa)*=Kera ® ($“)a which shows (S@)* N Ve = (Kera nVa) ® ($Han Va).
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Assume z € Y~ Kera. Then £ € Va for some v € V. Thus z =va=val=(va)a=

va= 0. This shows (Sa)* 1 Pa = (§Y)an Pa= (8" Thus dim Var = dim Sa+ dim S*a.
Now we apply Theorem (2.1) to obtain dim Fixy (G) = dim Fixs (G) + dim Fixg (G). 8]
Notice that the theorem above may not work if (p,1G|) # 1. Consider for example
G=<12...n)>,acyclicgmupofordungenaatedbypemmation(12...n)wtingon

¥ = Z. Notice that Fixy(G)= {0...0,1...1} and § = Fixy(G) is a G -invariant subspace in

V.1t n is odd i.e. (p,|G| ) = 1 then Fix ¢ (G) comprises of zero element only and dim Fixy(G) =
dim Fixg (G) + dim Fix¢ (G) = 1. But when is even i.e. (p,|G| ) = 2, dim Fixy(G) =

dim Fixg(G) = dim Fixg-(G) = 1 and the equality in Theorem (2.3) fails to hold. Since

dim Fixy (G) = dim Fixs(G) + dim Fixs* (G), one wonders if Fixy(G)= Fixs(G)® Fixs(G)
holds under the conditions of Theorem (2.3). But one immediately notices that Fixg(G)n
Fix s (G) may not always be the zero space. For example, if we let

G=<(123>,(4), ¥V =l’;'[ GF (4) and § =< 111>, then Fixs(G)= Fixs(G) = S, and hence

Fixg(G) N Fixgt(G) is not the zero space. This raises the question : when is then Fixy(G)=
Firg(G)® Fixs (G) ? The following theorem tries to answer that question.
Theorem 2.4. Let G be a group of nx n permutation matrices and F=GF (p ™) with

@l6)=LIlfSisa G -invariant subspace ofV=l",I F, such that Fixs(G) N Fixg-(G) ={0},
1

then Fixy(G)= Fixs(G) ® Fixs(G),
Proof: Let z € Fixg(G)+ Fixg-(G). Then £=s + 5L where s € Fixg(G) and steFixgd (G).
Hence zg = (s +51)g =59 t+slg=s+si=zandz e Fixy(G), which follows Fix(G) +
Fixs (G)c Fixy(G) . As (,|G|) = 1, by Theorem (2.3), we have dim Fixy(G)= dim Fix, (G)+
dim Fix¢~(G).
Since Fixs(G) N Fixg-(G) = {0}, dim (Fix(G) +Fixs(G)) = dim Fix,(G) +dim Fix¢ (G).
Hence dim Fixy(G)=dim (Fix/(G)+Fixs(G), which yields the desired equality Fixy(G)=
Fix(G) ® Fixs (G). [
Corollary (2.5). Lie G be a group of of n x n permutation matrices and F= GF (p") with
n
(p,|G|) = 1. If Sisa G -invariant subspace of ¥ =[1 F, such that S §*= {0}, then
1
Fixy(G)=Fix{(G) @ Fixs (G).
Proof: Follows immediately from the theorem above. [ |
Notice that condition if (p,|G])=1 in Theorem (2.4) is a sufficiency condition, not a
necessary one. To see this, we consider G =< (12)(3)(4) > acting on ¥ =2} and
§={0000,0010}. One checks that in spite of (p,|G]) =2, Fixy(G). is still Fix/(G) @ Fix(G).
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3. Characterization of Fixed Points when (5,|G1)#1

Finally we consider the case when p divides |G| . We set /f = Y. g and produce the
geG

following theorem, which states that when p divides |G |, the fixed points reside inside Ker 4.
Theorem. Let G be a group n x n permutation matrices and F= GF (p") with p dividing |G .
If §is a G- invariant subspace of V =I’:[ F, then SPc Fix{G) c Ker .

Proof: We first show that S Fix{G).Letve Sf ie.ve sp for some s €S. Then
vg=sPg =s( Zog)g-s Y g =sp=v. Hence v = Fix(G) .To see the other containment ie.
ge geCG

Fix, (G)< Ker f, we let v € Fix(G) and apply on it. Then

1G]
vp=v ¥ g= X vg=2v=1G|v=0. B
geG geG |
Notice that the containment Fixy(G) < Ker may not hold if (p,|G]) = 1. To see this we
consider the following example
Let G=<(123) (4) > and ¥ = Z 3. Then one checks that

=l =l 1=l

10

10 3 3 3

10 and for any v=(vy, vz, Vs, Va) € ¥, vB =(Xviy Lvis LVisVe)
01

O = -

1
1
A=\,
0

Hence V4= {0000,0001,1110,1 111},
On the other hand, |G|=3and3=1 (mod 2), so we have’3 = o and by Theorem (2.1) of the
previous section, v = Vo= Fixy(G). Thus Fixy(G)= {0000,0001,1110,1111}. But from

3 3 3
vB =(Xvis Lvis X Visva)We learn that for a vector in ¥ to be in Ker f, the last coordinate
=1 i=l =l
must be zero. So the vectors 0001,1111 in Fix,(G) with their last coordinate 1 can’t be in
Ker 3. This proves the fact that the containment sfC Fix(G)c Ker 3 for an arbitrary
G-invariant subspace S is specific to the case when p divides |G .
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