Fixed points in group invariant subspaces

M. KAMRUL HASAN AND PARTHA PRATIM DEY

Abstract: We investigate the subspaces of fixed elements (also known as centralizers) of G-invariant subspaces of $F = \prod_{i=1}^{n} F$ where G is a group of $n \times n$ permutation matrices, F is the Galois field of order p^{r} for some $r \ge 1$ and $\prod_{i=1}^{n} F$ is the usual canonical vector space of dimension n over F. We are able to characterize these subspaces when (p, |G|) = 1. In the case, when p divides |G| all we know is where to look for these subspaces, namely inside the kernel of $F = \sum_{i=1}^{n} g_i$.

Key words: Fixed points, group-invariant subspace, idempotent, permutation matrices.

1. Introduction:

Let F be a finite field of order p^r for some prime p and $r \ge 1$. Then $V = \prod_{i=1}^n F$ is a vector space of dimension n over F with basis canonical so that a typical vector has the shape $x = (x_1, \ldots, x_n), \ x_i \in F, \ i = 1, \ldots, n$. A [n, s] subspace S over F is a space inside V of dimension s. The dual subspace S^L is the subspace orthogonal to S under the usual scalar product on V. That is $S^L = \{x \in V \mid (u, x) = \sum_{i=1}^n u_i x_i = 0 \text{ for all } u \in S \}$. Then S^L is a [n, n-s] subspace because dim S + dim S im V.

Let G be a group of permutation matrices of order n. A subspace S of V is called G-invariant if $(S)g \subseteq S$.

It is easy to check that if S is G-invariant, so is S^{\perp} . Let $s^{\perp} \in S^{\perp}$. Then $(s^{\perp}, s^{\perp}g) = (sg^{t}, s^{\perp}) = (sg^{-1}, s^{\perp}) = 0$, when $s \in S$ and g^{t} is transpose of g. Then $s^{\perp}g \in S^{\perp}$ and S^{\perp} is a G-invariant subspace.

2. Characterization of Fixed Points when (p, |G|) = 1

Throughout this section we will assume that $F = GF(p^r)$ and (p, |G|). Set $\alpha = \frac{1}{|G|} \sum_{g \in G} g$.

Since (p, |G|) = 1, $\frac{1}{|G|} = |G|^{-1}$ exists in F and therefore α exists in the group-ring FG. We

now show that α is an idempotent. Let $v \in V = \prod_{i=1}^{n} F_i$. Then

$$v\alpha^{2} = (v\alpha)\alpha = \left(v\frac{1}{|G|}\sum_{g \in G}g\right)\left(\frac{1}{|G|}\sum_{g \in G}g\right) = v\frac{1}{|G|^{2}}\sum_{g \in G}g\left(\sum_{g \in G}g\right) = v\frac{1}{|G|^{2}}|G|\sum_{g \in G}g$$
$$= v\frac{1}{|G|}\sum_{g \in G}g = v\alpha \text{ and } \alpha \text{ is indeed an indempotent.}$$

Next we prove a couple of theorems.

Theorem 2.1: Let G be a group of $n \times n$ permutation matrices and $F = GF(p^r)$ with (p, |G|) = 1. If S is a G-invariant subspace of $V = \prod_{i=1}^{n} F_i$, then $S\alpha = Fix_S(G)$

Proof: We show that $S\alpha \subseteq \text{Fix}_s(G)$. Let $x \in S\alpha$. Then $x = s\alpha$ for some $s \in S$ and

$$s\alpha = s\left(\frac{1}{|G|}\sum_{g\in G}g\right) = \frac{1}{|G|}\sum_{g\in G}sg\in S$$
. Thus $x\in S$. Moreover for any $g\in G$.
 $xg = s\alpha g = s\left(\frac{1}{|G|}\sum_{g\in G}g\right)g = s\frac{1}{|G|}\sum_{g\in G}g = s\alpha = x$. Hence $x = \text{Fix}_S(G)$.

We now prove the other containment i.e. $Fix_s(G) \subseteq S\alpha$. Let $s \in Fix_s(G)$. Then

$$s\alpha = s\left(\frac{1}{|G|}\sum_{g\in G}g\right) = \frac{1}{|G|}\sum_{g\in G}sg = \frac{1}{|G|}\sum_{1}^{|G|}s = \frac{1}{|G|}|G|s = s. \text{ Hence } s = s\alpha \in S\alpha.$$

Theorem 2.2: Let G be a group of $n \times n$ permutation matrices and $F = GF(p^r)$ with (p, |G|) = 1. If S is a G-invariant subspace of $V = \prod_{i=1}^{n} F_i$, then $(S\alpha)^{\perp} = \text{Ker } \alpha \oplus (S^{\perp})\alpha$.

Proof: We prove that $(S\alpha)^{\perp} \subseteq \operatorname{Ker}\alpha + (S^{\perp})\alpha$. Let $x \in (S\alpha)^{\perp}$. Then $x - s\alpha \in \operatorname{Ker}\alpha$ as $\alpha^2 = \alpha$. Let us now check if $x \in S^{\perp}\alpha$. Since $x \in (S\alpha)^{\perp}$, we have $(x,s\alpha) = 0$ for $\forall s \in S$. Then $0 = (x,s\alpha) = (x\alpha^t,s) = (x\alpha,s)$ and $x\alpha \in S^{\perp}$. By applying α on both sides of $x\alpha \in S^{\perp}$ and using the idempotence, we obtain $x\alpha \in S^{\perp}\alpha$. Hence $x = (x - x\alpha) + \operatorname{Ker}\alpha$ belongs to $\operatorname{Ker}\alpha + (S^{\perp})\alpha$. We now want to show that $\operatorname{Ker}\alpha + (S^{\perp})\alpha \subseteq (S\alpha)^{\perp}$. Let $x \in \operatorname{Ker}\alpha + (S^{\perp})\alpha$. Then $x = k + s^{\perp}\alpha$ for some $k \in K$ and $s^{\perp} \in S^{\perp}$ and $(x,s\alpha) = (k + s^{\perp}\alpha,s\alpha) = (k\alpha^t + (s^{\perp}\alpha)\alpha^t,s) = (k\alpha + (s^{\perp}\alpha)\alpha,s) = (0 + s^{\perp}\alpha,s) = 0$ as $s^{\perp}\alpha \in S^{\perp}$. Hence $x \in (S\alpha)^{\perp}$ and $\operatorname{Ker}\alpha + (S^{\perp})\alpha \subseteq (S\alpha)^{\perp}$. Finally, we want to check if $\operatorname{Ker}\alpha \cap (S^{\perp})\alpha = \{0\}$. Let $x \in \operatorname{Ker}\alpha \cap (S^{\perp})\alpha = \{0\}$. Then $x = s^{\perp}\alpha$. Applying α to both sides, we obtain $x\alpha = (s^{\perp})\alpha^2$. Since $x \in \operatorname{Ker}\alpha$ and $\alpha^2 = \alpha$, the previous equality yields $0 = s^{\perp}\alpha$, which in turn yields 0 = x. Thus $\operatorname{Ker}\alpha \cap (S^{\perp})\alpha = \{0\}$.

Theorem 2.3. Let G be a group of $n \times n$ permutation matrices and $F = GF(p^r)$ with (p, |G|) = 1. If S is a G-invariant subspace of $V = \prod_{i=1}^{n} F_i$, then dim $Fix_V(G) = \dim Fix_S(G) + \dim Fix_{S^{\perp}}(G)$ **Proof:** As $S\alpha \subseteq V\alpha$, we have dim $V\alpha = \dim S\alpha + \dim ((S\alpha)^{\perp} \cap V\alpha)$. By Theorem (2.2.),

 $(S\alpha)^{\perp} = \operatorname{Ker}\alpha \oplus (S^{\perp})\alpha$ which shows $(S\alpha)^{\perp} \cap V\alpha = (\operatorname{Ker}\alpha \cap V\alpha) \oplus ((S^{\perp})\alpha \cap V\alpha)$.

Assume $x \in V\alpha \cap \text{Ker}\alpha$. Then $x \in V\alpha$ for some $v \in V$. Thus $x = v\alpha = v\alpha^{2} = (v\alpha)\alpha = x\alpha = 0$. This shows $(S\alpha)^{\perp} \cap V\alpha = (S^{\perp})\alpha \cap V\alpha = (S^{\perp})\alpha$. Thus dim $V\alpha = \dim S\alpha + \dim S^{\perp}\alpha$. Now we apply Theorem (2.1) to obtain dim Fix $_{V}(G) = \dim Fix_{S}(G) + \dim Fix_{S^{\perp}}(G)$.

Notice that the theorem above may not work if $(p,|G|) \neq 1$. Consider for example $G = \langle 12 \dots n \rangle >$, a cyclic group of order n generated by permutation $(12 \dots n)$ acting on $V = Z_2^n$. Notice that $Fix_V(G) = \{0 \dots 0, 1 \dots 1\}$ and $S = Fix_V(G)$ is a G-invariant subspace in V. If n is odd i.e. (p,|G|) = 1 then $Fix_{S^{\perp}}(G)$ comprises of zero element only and dim $Fix_V(G) = \dim Fix_S(G) + \dim Fix_{S^{\perp}}(G) = 1$. But when is even i.e. (p,|G|) = 2, dim $Fix_V(G) = \dim Fix_S(G) = \dim Fix_S(G) = 1$ and the equality in Theorem (2.3) fails to hold. Since $\dim Fix_V(G) = \dim Fix_S(G) + \dim Fix_S(G)$, one wonders if $Fix_V(G) = Fix_S(G) \oplus Fix_S(G)$ holds under the conditions of Theorem (2.3). But one immediately notices that $Fix_S(G) \cap Fix_S^{\perp}(G)$ may not always be the zero space. For example, if we let

 $G = <(123)>, (4), V = \prod_{i=1}^{n} GF(4)$ and S = <111>, then $Fix_{S}(G) = Fix_{S}^{\perp}(G) = S$, and hence

 $Fix_S(G) \cap Fix_{S^{\perp}}(G)$ is not the zero space. This raises the question: when is then $Fix_V(G) = Fix_S(G) \oplus Fix_{S^{\perp}}(G)$? The following theorem tries to answer that question.

Theorem 2.4. Let G be a group of $n \times n$ permutation matrices and $F = GF(p^{\tau})$ with (p, |G|) = 1. If S is a G-invariant subspace of $V = \prod_{i=1}^{n} F_i$, such that $Fix_S(G) \cap Fix_{S^{\perp}}(G) = \{0\}$, then $Fix_V(G) = Fix_S(G) \oplus Fix_{S^{\perp}}(G)$,

Proof: Let $x \in Fix_S(G) + Fix_{S^{\perp}}(G)$. Then $x = s + s^{\perp}$ where $s \in Fix_S(G)$ and $s^{\perp} \in Fix_{S^{\perp}}(G)$. Hence $xg = (s + s^{\perp})g = sg + s^{\perp}g = s + s^{\perp} = x$ and $x \in Fix_V(G)$, which follows $Fix_S(G) + Fix_{S^{\perp}}(G) \subseteq Fix_V(G)$. As (p, |G|) = 1, by Theorem (2.3), we have dim $Fix_V(G) = \dim Fix_S(G) + \dim Fix_{S^{\perp}}(G)$.

Since $Fix_S(G) \cap Fix_{S^{\perp}}(G) = \{0\}$, dim $(Fix_S(G) + Fix_{S^{\perp}}(G)) = \dim Fix_S(G) + \dim Fix_{S^{\perp}}(G)$. Hence dim $Fix_V(G) = \dim (Fix_S(G) + Fix_{S^{\perp}}(G))$, which yields the desired equality $Fix_V(G) = Fix_S(G) \oplus Fix_{S^{\perp}}(G)$.

Corollary (2.5). Lie G be a group of of $n \times n$ permutation matrices and $F = GF(p^T)$ with (p, |G|) = 1. If S is a G-invariant subspace of $V = \prod_{i=1}^{n} F_i$, such that $S \cap S^{\perp} = \{0\}$, then $Fix_V(G) = Fix_S(G) \oplus Fix_S^{\perp}(G)$.

Proof: Follows immediately from the theorem above.

Notice that condition if (p, |G|) = 1 in Theorem (2.4) is a sufficiency condition, not a necessary one. To see this, we consider $G = \langle (12)(3)(4) \rangle$ acting on $V = \mathbb{Z}_2^4$ and $S = \{0000,0010\}$. One checks that in spite of (p, |G|) = 2, $Fix_V(G)$ is still $Fix_S(G) \oplus Fix_{S^{\perp}}(G)$.

3. Characterization of Fixed Points when $(p, |G|) \neq 1$

Finally we consider the case when p divides |G|. We set $\beta = \sum_{g \in G} g$ and produce the

following theorem, which states that when p divides |G|, the fixed points reside inside Ker β .

Theorem. Let G be a group $n \times n$ permutation matrices and $F = GF(p^T)$ with p dividing |G|.

If S is a G- invariant subspace of $V = \prod_{i=1}^{n} F_i$, then $S\beta \subseteq Fix_c(G) \subseteq \text{Ker } \beta$.

Proof: We first show that $S\beta \subseteq Fix_s(G)$. Let $v \in S\beta$ i.e. $v \in s\beta$ for some $s \in S$. Then $vg = s\beta g = s\left(\sum_{g \in G} g\right)g = s\sum_{g \in G} g = s\beta = v$. Hence $v = Fix_s(G)$. To see the other containment i.e.

 $Fix_{\mathfrak{F}}(G) \subseteq \operatorname{Ker} \beta$, we let $v \in \operatorname{Fix}_{\mathfrak{F}}(G)$ and apply β on it. Then

$$\nu\beta = \nu \sum_{g \in G} g = \sum_{g \in G} \nu g = \sum_{1}^{|G|} \nu = |G| \nu = 0.$$

Notice that the containment $Fix_S(G) \subseteq \text{Ker } \beta$ may not hold if (p, |G|) = 1. To see this we consider the following example

Let $G = \langle (123)(4) \rangle$ and $V = \mathbb{Z}_2^4$. Then one checks that

$$\beta = \begin{bmatrix} 1 & 1 & 1 & 0 \\ 1 & 1 & 1 & 0 \\ 1 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \text{ and for any } \nu = (\nu_1, \nu_2, \nu_3, \nu_4) \in V, \ \nu\beta = (\sum_{i=1}^3 \nu_i, \sum_{i=1}^3 \nu_i, \sum_{i=1}^3 \nu_i, \nu_4).$$

Hence $V\beta = \{0000,0001,1110,1111\},\$

On the other hand, |G| = 3 and $3 = 1 \pmod{2}$, so we have $\beta = \alpha$ and by Theorem (2.1) of the previous section, $\nu\beta = V\alpha = Fix_{\nu}(G)$. Thus $Fix_{\nu}(G) = \{0000,0001,1110,1111\}$. But from

 $v\beta = (\sum_{i=1}^{3} v_i, \sum_{i=1}^{3} v_i, \sum_{i=1}^{3} v_i, v_4)$, we learn that for a vector in V to be in Ker β , the last coordinate

must be zero. So the vectors 0001,1111 in $Fix_{\mathcal{V}}(G)$ with their last coordinate 1 can't be in Ker β . This proves the fact that the containment $s\beta \subseteq Fix_{\mathcal{S}}(G) \subseteq \text{Ker } \beta$ for an arbitrary G-invariant subspace S is specific to the case when p divides |G|.

REFERENCES

- Hoque K. A., P. P. Dey., Invariant Linear Codes and their Dimensions, Proc. Of the International Conference on Information Knowledge Engineering.
- [2] Lander E.S., Symmetric Designs: An Algebraic Approach, London-New York-New Rochelle-Melbourne-Sydney: Cambridge Press, (1983).

M. KAMRUL HASAN, PARTHA PRATIM DEY

Department of Computer Science & Engineering,

North South University,

Bangladesh.

Email:ppd@northsouth.edu