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Analytic solution for a system of KDV equations

MAHENDRA PANTHEE

Abstract: We consider a system of coupled Korteweg-de Vries equations and prove well-posedness
results in a space of functions analytic in a strip. The typical class of functions we consider to
obtain analytic solution is the Gevery class introduced by Foias and Temam in [6].

1. Introduction
In this work we consider the initial value problem (IVP)

u,+u,, +2auu, +ov, +@w), =0
(1.1) v, +0,., +20w, +uu, +(uw), =0
u(x,0) = uy (£), v(2,0) = vy (2)

where o, f are constants with @+ = 1 and z, f € IR This is a system studied by Nutku and
Oguz in [16] and has a structure of the Korteweg-de Vries (KdV) equations coupled in the
nonlinear terms. This system has a bi-Hamiltonian structure. If the constants are such that
a =+ f, then the equations in the system (1.1) can be decoupled.

The main interest of this work is to find solutions (u(z,?), v (1)) of the IVP (1.1) which
admit an extension as an analytic function to a complex strip S, : = {z + iy : |y| < o}, at least

for small values of & . Analytic Gevrey class introduced by Foias and Temam [6] is a suitable
function space for our purpose.

In recent literature, many authors have devoted much effort to get analytic solutions to
several evolution equations. An early work in this direction is due to Kato and Masuda [12].
They considered a large class of evolution equations and developed a general method to obtain
spatial analyticity of the solution. In particular, the class considered in [12] contains the KdV
equation. The more recent results in this field can be found in the work of Hayashi [10],
Hayashi and Ozawa [11], de Bouard, Hayashi and Kato [3], Kato and Ozawa [13], Bona,
Gruji¢ and Kalish [1, 2], Gruji¢ and Kalish [8, 9] and references there in.

Let us move to introduce some notations and define space of functions in which we will
concentrate our work. For o > 0 and s € IR the analytic Gevrey class G+ is defined as the

subspace of L? (IR) with norm.
(12) 1 lwa= [ (OO O de,

where {.)=1+].|and f denotes the Fourier transform of f defined by
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(1.3) &=
whose inverse transform is given by
(14) 1@= s [ o T4

If we define a Fourier multiplier opm;{by
f(&)=() (&)
then Gevrey norm of order (o; 5) can be written in terms of the operator 4 as

IS llgos=ll A% | 2R

Note that a function in the Gevrey class G is a restriction to the real axis of a function
analytic on a symmetric strip of width 2o: Hence, our interest is to prove well-posedness result
for the IVP (1.1) for given data in G”** x G** for appropriate s.

Before establishing well-posedness results in the analytic Gevrey class, we will prove the
same in the usual Sobolev spaces H* x H*. Recall that, #* denotes the L’ -based Sobolev
space of order s with norm

1S = [ ©¥IFOP 2,

We denote by L (L%), (1 <p <) the Banach spaces L”(IR : L7(IR)) for variables f and x
respectively. For -1 <b <1, let X ; denote the Hilbert space with the norm

Wa= ( [z A+1z=21A+ |17 | ENP dEdr ),

where f(£,7) is the Fourier transform of f in both z and ¢ variables. This is the space
introduced by Bourgain [4] in the KdV context to obtain well-posedness results for low
regularity data.

Let us recall some properties of the space X, ; regarding the regularity. First, observe that
for fe X, one has,

"f"x,#g"(l"'Dt)bU(‘)f"L}(Hi):
where U(f) = ¢~*%% is the unitary group associated with the linear Kd¥ flow. If 5> 1/2 , the
previous remark and the Sobolev lemma imply,
X, p cC(IR ;H(IR)).

We use C to denote various constants whose exact values are immaterial. Also, we use the
notation A S B if there exists a constant C > 0 such that A <C B, 4 2 B if there exists a
constant C >0 suchthat 4> CBandA ~BifASsBandA 2 B.

Now we state the local existence result for given data in the usual Sobolev space
H?(R)x H*(IR).

Theorem 1.1. For any (u,,v,) € H*(IR)x H*(IR), s> -3/4 and b € (1/2, 1), there exist
T=T(llug [l;;55ll 2o [l 45 ) and a unique solution of (1.1) in the time interval [-T, T ] satisfying
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(1.5) u,ve C([-T,T]; H*(R)),

(1L.6) wveX;pcLf | (R;L;(R)), for 1Sp<e,
a.n @), (0%)z € X5

i

(1.5 Up, Uy € Xg3py

Aoreover, given T' e (0,T), the map (uy,v)+> (u (£), v (1)) is smooth from H*(IR) x H*(IR)
to C([-T",T']; H*(IR)) x C([-T",T"]; H*(IR)).

Note that [ (u? +v?)dz is conserved by the flow of (1.1). Using this conserved quantity
we can obtain an a priori estimate in I (IR) x £*(IR) which leads to the following global well-
posedness result.

Theorem 1.2. The unique local solution to the initial value problem (1.1) obtained in
Theorem 1.1 can be extended globally in time for given data in H* (IR) x F* (IR), whenever
s20.

Remark 1.3. Using I-method and almost conserved quantity introduced in the KdV context by
Colliander et al in [5], the global well-posedness result of the above theorem can be improved
Jor s> =3/10. There is similar work in this direction by the author in collaboration with
Linares in [17). As our interest here is to obtain analytic solutions, we do not proceed in this
direction. ]

Before stating the main result of this work, let us introduce the function space X%
which is analogue of Bourgain’s space X’ 5,5 introduced earlier.

Foro>0ands e R b € [-1, 1] define X?** with the norm
1S Byonp = [[(£-8@%e%® | je0)P agas.
If we define the operator A?, forpe}l\by
N fED)=(0)° f(&.7).

then we have
— || 45 A rb
VUL s =N € RS o

Let us record that C ([ 0, T'] ; G?*) denotes the space of continuous functions defined on
the interval [ 0, 7] that take values in G%*. If we equip C ([ 0, T'] ; G?°) with the norm

592 17 Y

then it becomes a Banach space.
For 5> 1/2, using Sobolev embedding we have

. 1FCoMos Sl g s

Therefore the space X is embedded in C ([0, 7] ; G®*) whencver b> 1/2.
Now we are in position to state the main result of this work which reads as follows.
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Theorem 1.4. Let s 2 0 and o> 0 then for any (g, o) € G x G, there exists a time
'> 0 such that the IVP (1.1) is well- posed in the space C ([0,T1; G7*)x C ({0, T15G*?).

2. Well-posedness result in usual Sovolev space

In this waimwewluptwcwenwmmlminmeusual&bolw spaces, The idea
of the proof is similar to the one employed for the Gear and Grimshaw system in the author’s
previ work in collaboration with Linares in [17]. For the sake of completeness, we just give
sketch of the proof.
Proof of Theorem 1.1. Using Duhamel’s principle, we study the following system of integral
equations equivalent to the system (1.1),
{ u(®)=U(Ou,— [, UC=1) Fvu,,2,) (),

@1 ;
v () =U()D, ~ [ Ult=1) G 0,115, 0,) ()’

where U(f)= ¢~} is the unitary group that describes the linear KV flow and F'and G are
i b
-Toﬁndilo‘etlsomtioutoﬂanP_(l.l)wcmteplwedwsymma.l)wimmefollmving
system

s {'t(t)w.(t)v(r)u, 1O [ UG-0)yr @) Fouoou,0, )OO,

2()= OV, -1 O [; UE-0wr () Guvu v ) O,

where wec;(m),osw(:)slmmmmm
L |t]<],
3 /() =1
v Yoo {ﬁ. lt152,
and () =w(F) 0<T<1.
Now,weconsidatbefouowingﬁmcﬁmspacewhmwéﬁekasoluﬁonwmeNP(l.l).
For given (uo,u%,) € H*(R)x H*(IR) and b >1/ 2, let us define,
Jl'm:={(u.v)ex,,,xx,,:||u|]x,'bsM, IIDIIx,,SN},
where M =2C, || 4 |l ;5 and N=2C, v ll,,; Then ) is & complete metric space with

norm,

11 @ 2) Mgy = ullx,,* vllx,
Without loss of generality, we may assume that M > 1 and N> 1. For (u,0) € Hyp, letus
define the maps,
a8 0w 1= OV -1 [ UE-NYrEOF (v 0) O
?Vo["'v] =Vl(‘)u(‘)7’o ’Wl(’) E U(‘ "'t') w,-(t')G(u,v, "xvvx)(")d"v
We prove that ® x ‘¥ maps H ey into 9{ o and is a contraction. To achieve this goal we
use the following estimates

Q
a
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i
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e
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@.5) s U, llx, , <Cl e -

@6 Awr [ U= SO Ny, SCTH | flly, ;b5 b-1<b <0

and

. 31 3 il
(2—7) 'ax("v)"x"b: S‘*‘"""x,,b"vﬂx,'ba S>-z.;<b<z,b-l<b <_I:

Proof of estimates (2.5) and (2.6) is given in [14] and [7] and that of (2.7) is given in [15].
Now using estimates (2.5)-(2.7) we obtain
o { 1000l Iy, , <Colltg N + CT Ul , +lol, , +luly, Ivly,, 5

1% 2]lx, 5 <Collvoll ;s +CzT’{l'|ullfv,,, +lol, » Hlly  lelx,,
where @ = 1-b+¥'.

As (u,v) € #,,, with our choice of M and N we get from (2.8),
[ ®@[u])|ly  <&+C 1% {M?+ N?+ MN}

29) T i S A
“W["’"]"x,',,sz"'czr {M*+N* + MN}.

If we choose T such that,
7% < (2max {C,,Cy}(M + N)*)™
then the estimate (2.9) yielas,
I®Mwolllx,, SM aw |¥[wollx,, <N.
Therefore,
(®[u,v],¥[u,v]) e Huy.
In an analogous manner we can show that @ x ¥ : (u,v) > (®[u,v],'¥[u,v])is a contraction.
Therefore the map ® x ‘¥ is a contraction map in the ball H . Hence, there exists a
unique fixed point (u,v) that solves the IVP (1.1) for T'< 4. The remainder of the proof follows
a standard argument. n]

3. Well-posednesss results in the analytic class

Now we proceed to establish the estimates that are fundamental in the proof of the main
result of this work.

3.1.Linear estimates.

Lemma3.l. LetseR, 0 >0, uoeG%, b>1/2 and b— 1< b' <0. Then there exists a
constant C such that

(3.10) I OUO U || yo5p =40 ligos,

t v "o —bid'
(3.11) N [, U@=0)F@)dl )| o5 SCT N £ 1| s
Proof: For o= 0 the estimates in (3.10) and (3.11) turn to be estimates (2.5) and (2.6)

respectively. For o > 0, we just need to replace uo by e*ugand f by ¢ f and so the proof

follows in analogous manner. O




[52]

3.2. Bilinear estimate

Lemma 3.2. Letuv € X7, 520,05 >0, L<b<.1f b— 1 <b' <~ ,then there exists a

constant C depending only on s, b and b"such that
(3 ~12) " a.:(w) "'xa,x,b? <C l} u " YOS ll Vﬂ xosb.

Proof: w’cglvepmofofe 12) for s =0 , the general case s > 0 follows from it. So, our
interest here is to prove
(3 1 3) " az(w) " yo.,00 sC “ ul xa,o:b [zl xo.0b.
Let us define
fED=@-¥e"C i),
gl&) =& ") i(gn).

Sothit, |14l yg05 = 1713, 304 19lye0s =19l Abo,

18:G@) | o0 = I1(r =& e7D £+ D)€, 2 22

(3.14) [ (- o0 g .Uﬁ(ﬁ'ﬁ)5(5-5:#*’044’14"1',‘,#
¢

7 Hf(ﬁ,rn)e”"“"" 9(E =& 7 ~11)e 05 )
(-7 (m=&°  @-n-E-§P° “ ﬂ,,

Now, the estimate (3.13) can be written in terms of fand g as

ea(;) I J, —o(é1) f(;,,r;;)e.’«-")g(f =&pr—1)

&\dr
S (=& -1 - -&PY - IL} L2

(3.15) I

Cllf",é,} Hal;gL;v

Using Cauchy-Schwarz inequanty and Fubiani’s theorem, the LHS of (3.15) can be estimated

£e® H “"f(éhfx)e"’("’""g(f—«fn-r-rn)dfd
T
(r-g? @-EDhe—n-C-a7 |

e"(‘l) e"’@’f!) dgl dfl

£eoD)
(3.16) < , I _
=& I =g e-n-C-a | , . i aleliyas

gLr
So, to obtain the desired estimate (3.15) and there by (3.13), we need to show

e .80 11 B B ur
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{ec({) e“"(‘l) e"‘(‘"l) dfxdﬁ

<G,

G.a7 ,

@-&? H @ - a-n-¢-a’| , |
4 T

Nose thae, by triangle inequality we have | € |< | &1 |+ |£-£; |.So, e < o7V (76760

s the estimate (3.17) will be proved if we can show

d§|df|

<6,
; ' II
=8 I (g -1 - (€ - &)y

(3.18)

LRLYE

e T
The expression in (3.18) is exactly the same term appeared in the proof of the usual bilinear
estimate related to the KdV equation in [15]. So, the rest of the proof follows the same lines in
[15]. This completes the proof of the lemma. O

3.3. Proof of the main result. Now we will use the linear and bi-linear estimates derived
above to prove the main resuit of this work.

Proof of Theorem 1.4. The idea of proof is the similar to that of Theorem 1.1 presented
earlier. We write the [VP (1.1) in its equivalent integral form as in (2.2). For given
(u9,0p) € G7*(IR) x G7*(IR) and b > 1 /2, let us define M=2C} || 4 || 0,5 and
N=2C-"ng || ga.s. Now define a ball

Braw : = {(1,0) € XT x X2 || 4|l yorsp S M, || 0| yoss S N
Then By is a complete metric space with norm,

112Dy =1 s + 112l g
In this case also, without loss of generality, we may assume that M> 1 and N> 1. For

(u,v) € By, let us define the maps ® x ¥ as in (2.5). We will show that ® x Wisa
contraction map in the ball B,y .

First, let us move to show that @ x ‘¥ maps the ball B,y into itself. Using estimates
(3.10) - (3.12) we obtain as in (2.9), for 8 = 1- b+ ¥/,

- 1Dl 0 <4+ C 70 (M? +N? + MN}
’ ¥l q0p S B+ CoTO (M + N? + MNY.

Now, choosing 7 such that,
T° < (2max {C,,C,}(M + N)*)™!
we obtain from (3.19),
Pl yo5p <M and ||'¥] ;055 <N.

Therefore, ® x ‘¥ maps B,y into B4 . One can easily prove that ® x ‘¥ is a contraction map
in an analogous manner, so we sKip it.

Hence, the map @ x ‘¥ has a unique fixed point (»,v) which solves the IVP (1.1) for 7< 6
in the ball @,y . The rest of the proof follows a standard argument so we omit the details. This
completes the proof of the theorem. i}
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